Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19393–19401 | Cite as

Template-free synthesis of uniform rose-like MoS2 hierarchitectures and their enhanced photocatalytic properties

  • Huijie Wu
  • Yuan Li
Article
  • 19 Downloads

Abstract

In this work, uniform rose-like MoS2 hierarchitectures have been succefully synthesized on a large scale through a template-free hydrothermal method by the reaction of hexaammonium heptamolybdate tetrahydrate [(NH4)6Mo7O24·4H2O] and thioacetamide (CH3CSNH2). The rose-like MoS2 hierarchitectures have a diameter of 350–450 nm and are formed by the assembly of numerous nanosheets. A reasonable growth mechanism of the MoS2 hierarchitectures was proposed according to the time-dependent experiments. In addition, the as-prepared rose-like MoS2 hierarchitectures show a large specific surface area of 33.72 m2 g−1 with a dominant pore diameter of 46 nm. UV–Vis absorption spectrum indicated that the sample shows a large blue-shift compared to bulk MoS2. The photocatalytic properties were investigated and exhibit enhanced visible light photocatalytic performance with the assistence of H2O2, which can be attributed to the special structural feature with an open and porous nanostructured surface layer that significantly facilitates the diffusion and mass transportation of MB molecules and oxygen species in photochemical reaction of MB degradation. This resulting rose-like MoS2 hierarchitectures are very promising visible light photocatalysts for the degradation of dye pollutants and other applications.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Project Nos. XDJK2016C003, XDJK2017C003; XDJK2016E001, for Innovation and Entrepreneurship Students), the Foundation of Chongqing Municipal Education Commission (Grant Nos. KJ1711292; KJ1711272), Chongqing Natural Science Foundation (Grant Nos. cstc2016shmszx20002; cstc2016jcyjA0140; cstc2017jcyjA1821), Chongqing university outstanding achievement transformation projects (Grant No. KJZH17130), and Funding scheme for youth backbone teachers of universities in Chongqing.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    N. Goswami, A. Giri, S.K. Pal, Langmuir 29, 11471 (2013)CrossRefGoogle Scholar
  2. 2.
    S.Z. Butler, S.M. Hollen, L.Y. Cao et al., ACS Nano 7, 2898 (2013)CrossRefGoogle Scholar
  3. 3.
    Z. Li, J. Wang, J. Lu, J. Meng, Appl. Surf. Sci. 264, 516 (2013)CrossRefGoogle Scholar
  4. 4.
    B.J. Guo, K. Yu, H.L. Li et al., ACS Appl. Mater. Interfaces 8, 5517 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Yang, Y.J. Chen, B.H. Qu et al., Electrochim. Acta 115, 165 (2014)CrossRefGoogle Scholar
  6. 6.
    Z.C. Wu, B. Li, Y.J. Xue, J.J. Li, Y.L. Zhang, F. Gao, J. Mater. Chem. A 3, 19445 (2015)CrossRefGoogle Scholar
  7. 7.
    X.P. Zhou, B. Xu, Z.F. Lin, D. Shu, L. Ma, J. Nanosci. Nanotech. 14, 7250 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111 (2011)CrossRefGoogle Scholar
  9. 9.
    D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, C.N.R. Rao, ACS Nano 6, 5635 (2012)CrossRefGoogle Scholar
  10. 10.
    X.X. Wang, F.X. Nan, J.L. Zhao, T. Yang, T. Ge, K. Jiao, Biosens. Bioelectron. 64, 386 (2015)CrossRefGoogle Scholar
  11. 11.
    Z.H. Zhou, Y.L. Lin, P.G. Zhang, Mater. Lett. 131, 122 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Zhu, M.L. Du, M. Zhang, M.L. Zou, T.T. Yang, Y.Q. Fu, J.M. Yao, J. Mater. Chem. A 2, 7680 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.Y. Zhao, L. Kuai, Y.G. Liu et al., Sci. Rep. 5, 8722 (2015)CrossRefGoogle Scholar
  14. 14.
    R.W.J. Scott, M.J. MacLachlan, G.A. Ozin, Curr. Opin. Solid State Mater. Sci. 4, 113 (1999)CrossRefGoogle Scholar
  15. 15.
    P. Kar, S. Farsinezhad, X.J. Zhang, K. Shankar, Nanoscale 6, 14305 (2014)CrossRefGoogle Scholar
  16. 16.
    K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Electrochim. Acta 132, 397 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Berntsen, T. Gutjahr, L. Loeffler, J.R. Gomm, R. Seshadri, W. Tremel, Chem. Mater. 15, 4498 (2003)CrossRefGoogle Scholar
  18. 18.
    J. Etzkorn, H.A. Therese, F. Rocker, N. Zink, U. Kolb, Adv. Mater. 17, 2372 (2005)CrossRefGoogle Scholar
  19. 19.
    S.S. Liu, X.B. Zhang, H. Shao, J. Xu, F.Y. Chen, Y. Feng, Mater. Lett. 73, 223 (2012)CrossRefGoogle Scholar
  20. 20.
    N. Liu, P. Kim, J.H. Kim, J.H. Ye, S. Kim, C.J. Lee, ACS Nano 8, 6902 (2014)CrossRefGoogle Scholar
  21. 21.
    W.K. Ho, J.C. Yu, J. Lin, J.G. Yu, P.S. Li, Langmuir 20, 5865 (2004)CrossRefGoogle Scholar
  22. 22.
    Q.S. Gao, L.C. Yang, X.C. Lu, J.J. Mao, Y.H. Zhang, Y.P. Wu, Y. Tang, J. Mater. Chem. 20, 2807 (2010)CrossRefGoogle Scholar
  23. 23.
    S.M. Cui, Z.H. Wen, X.K. Huang, J.B. Chang, J.H. Chen, Small 11, 2305 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Yan, B.Y. Xia, X.M. Ge, Z.L. Liu, J.Y. Wang, X. Wang, ACS Appl. Mater. Interfaces 5, 12794 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 5, 6136 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Feng, J. Ma, H. Li, R. Zeng, Z.P. Guo, H.K. Liu, Mater. Res. Bull 44, 1811 (2009)CrossRefGoogle Scholar
  27. 27.
    R.H. Barnsley, A.H. Thompson, Solid State Sci. 8, 1133 (2006)CrossRefGoogle Scholar
  28. 28.
    H. Liu, X. Su, C.Y. Duan, X.N. Dong, Z.F. Zhu, Mater. Lett. 122, 182 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Cheng, Y.S. Wang, Y.H. Zheng, Q. Yong, J. Phys. Chem. B 109, 11548 (2005)CrossRefGoogle Scholar
  30. 30.
    X.J. Dai, Y.S. Luo, S.Y. Fu, W.Q. Chen, Y. Lu, Solid State Sci. 12, 637 (2010)CrossRefGoogle Scholar
  31. 31.
    Y. Gao, C.L. Chen, X.L. Tan, H. Xu, K.R. Zhu, J. Colloid Interface Sci. 476, 62 (2016) 62CrossRefGoogle Scholar
  32. 32.
    S.K. Bhar, N. Mukherjee, S.K. Maji, B. Adhikary, A. Mondal, Mater. Res. Bull. 45, 1948 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Appl. Surf. Sci. 254, 2685 (2008)CrossRefGoogle Scholar
  34. 34.
    K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86, 463 (1982)CrossRefGoogle Scholar
  35. 35.
    J.P. Wilcoxon, P.P. Newcomer, G.A. Samara, J. Appl. Phys. 81, 7934 (1997)CrossRefGoogle Scholar
  36. 36.
    A. Ghosh, C. Kulsi, D. Banerjee, A. Mondal, Appl. Surf. Sci. 369, 525 (2016)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, X.F. Fan, X. Quan, S. Chen, H.T. Zu, Environ. Sci. Technol. 45, 5731 (2011)CrossRefGoogle Scholar
  38. 38.
    T. Oku, N. Kakuta, K. Kobayashi, A. Suzuki, K. Kikuchi, Prog. Nat. Sci. 21, 122 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute for New Materials TechnologyChongqing University of Arts and SciencesChongqingPeople’s Republic of China
  2. 2.Institute for Clean energy & Advanced Materials, Faculty of Materials & EnergySouthwest UniversityChongqingPeople’s Republic of China
  3. 3.Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesChongqingPeople’s Republic of China

Personalised recommendations