Laser-stimulated piezo-optical and third harmonic generation studies for Na2O–Sb2O3 glass ceramics-influence of gold ions

  • J. Ashok
  • I. V. Kityk
  • A. Wojciechowski
  • M. Srinivasa Reddy
  • V. Ravi Kumar
  • G. Lakshminarayana
  • N. Veeraiah


Sodium antimonate glass ceramics with different concentrations of Au2O3 were synthesized. The prepared samples were characterized by XRD, XPS, SEM and TEM techniques. These studies have revealed that the samples consist of multiple crystalline phases composed of Sb3+, Sb5+, Au3+ ions, and Au0 particles; moreover these studies have indicated growing proportion of Au0 particles and Sb5+crystal phases (Na2Sb2O6) with increase of Au2O3 concentration. IR and Raman spectral studies have pointed out an increasing degree of polymerization of the glass network with increase of Au2O3 content while optical absorption studies indicated surface plasmon resonance effects. Nd: YAG laser (λ = 1320 nm and pulse width 8 ns) was used for inducing third harmonic generation (THG) signal. Later, THG signal intensity of Nd: YAG laser (λ = 1064 nm and pulse width of 20 ns) vs fundamental beam power density was recorded. The results indicated the maximum intensity for the samples containing a low concentration of Au2O3. For inducing piezo-optical effects, Nd: YAG laser (λ = 1064 nm) and its doubled frequency beam λ = 532 nm (with simultaneous mechanical pressure) were used. The cw He-Ne laser of 20 mW (with beam diameter about 0.5 mm) was used as probing beam for measuring the piezo-optical effects in the photo-polarized samples. The variation of the intensity of the THG beam and piezo-optical coefficients were found to be the maximal for the samples mixed with small quantities of Au2O3. The detailed analysis of XRD, SEM, EPR, IR, optical absorption spectral results suggested that concentrations of Na3SbO3 and also Au2O3 crystal phases are maximal in these samples and are responsible for the maximal photoinduced effects, while the increasing presence of Na2Sb2O6 crystal phases and Au0 metallic particles are found to be hindrance for generation of third harmonic beams and also piezo-optical effects. Overall, the obtained results of nonlinear optical (NLO) and piezo-optical studies indicated that Na2O-Sb2O3 glass ceramics containing small traces of Au2O3 are useful for considering them for nonlinear optical triggering devices and piezo-electric devices.



One of the authors, J. Ashok wishes to thank UGC, New Delhi, for sanctioning RGNF fellowship to carry out this work. N. Veeraiah wishes to thank UGC, New Delhi, for sanctioning BSR Faculty fellowship to carry out this work.


  1. 1.
    J. Ashok, M. Kostrzewa, M. Srinivasa Reddy, V. Ravi Kumar, N. Venkatramiah, M. Piasecki, N. Veeraiah, Structural and physical characteristics of Au2O3 doped sodium antimonate glasses—part I. J. Am. Ceram. Soc.
  2. 2.
    J. Ashok, M. Kostrzewa, A. Ingram, N. Purnachand, M. Srinivasa Reddy, V. Ravi Kumar, N. Venkatramiah, N. Veeraiah, Structural and physical characteristics of Au2O3 doped sodium antimonate glasses—part II Electrical characteristics. J. Am. Ceram. Soc.
  3. 3.
    V.V. Multian, J. Riporto, M. Urbain, Y. Mugnier, G. Djanta, S. Beauquis, C. Galez, V.Ya Gayvoronsky, R. Le Dantec, Averaged third-order susceptibility of ZnO nanocrystals from third harmonic generation and third harmonic scattering. Opt. Mater. 84, 579–585 (2018)CrossRefGoogle Scholar
  4. 4.
    C.F. Hernandez, G.R. Ortiz, S.Y. Tseng, M.P. Gaja, B. Kippelen, Third-harmonic generation and its applications in optical image processing. J. Mater. Chem. 19, 7394–7401 (2009)CrossRefGoogle Scholar
  5. 5.
    I.V. Kityk, N.S. AlZayed, K. Kobayashi, X. Chen, M. Oyama, A.M. El-Naggar, A.A. Albassam, Influence of Al-doped ZnO and Ga-doped ZnO substrates on third harmonic generation of gold nanoparticles. Phys. E. 71, 91–95 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Kannappan, R. Liyakath, J. Tatsugi, Third-order nonlinear optical characteristics of bulk film effect on regioregular poly(3-dodecylthiophene) thin films fabricated by the drop-casting method. J. Mater. Sci. 27, 8973–8979 (2016)Google Scholar
  7. 7.
    A. Sundari, S. Manikandan, Third order nonlinear optical properties and optical limiting behaviour of sodium penta borate. J. Mater. Sci. 29, 558–567 (2018)Google Scholar
  8. 8.
    S.Y. Moustafa, M.R. Sahar, S.K. Ghoshal, Comprehensive thermal and structural characterization of antimony-phosphate glass. Results Phys. 7, 1396–1141 (2017)CrossRefGoogle Scholar
  9. 9.
    A.M. Zoulfaka, A.M. Abdel-Ghany, T.Z. Abou-Elnasr, A.G. Mostafa, S.M. Salem, H.H. El-Bahnaswy, Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses. Appl. Radit. Isot. 127, 269–274 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Jagannath, B. Eraiah, K.N. Krishnakanth, S. Venugopal Rao, Linear and nonlinear optical properties of gold nanoparticles doped borate glasses. J. Non-Cryst. Solids 482, 160–169 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Majchrowski, S. Klosowicz, R. Weglowski, I. Cieslik, M. Piasecki, I.V. Kityk, A.H. Reshak, Electro-optical properties of BixLayScz(BO3)4 (x + y + z = 4) nano crystallites having untite structure incorporated into polymer matrices. J. Alloys Compd. 488, 291–293 (2009)CrossRefGoogle Scholar
  12. 12.
    I.V. Subba Rao, J. Kityk, V. Ashok, K.J. Ravi Kumar, A. Plucinski, K. Siva Sesha Reddy, N. Naresh Kumar, Veeraiah, Physical characteristics of PbO-ZrO2-SiO2:TiO2 glass ceramics embedded with Pb2Ti2O6 cubic pyrochlore crystal phase: part-II piezo-optical acoustic and elastic properties. J. Alloys Compd. 725, 318–325 (2017)CrossRefGoogle Scholar
  13. 13.
    I.V. Kityk, G.L. Myronchuk, O.V. Parasyuk, A.S. Krymus, P. Rakus, A.M. El-Naggar, A.A. Albassam, G. Lakshminarayana, A.O. Fedorchuk, Specific features of photoconductivity and photoinduced piezoelectricity in AgGaGe3Se8 doped crystals. Opt. Mater. 63, 197–206 (2017)CrossRefGoogle Scholar
  14. 14.
    W. Kuznik, P. Rakus, K. Ozga, O.V. Parasyuk, A.O. Fedorchuk, L.V. Piskach, A. Krymus, I.V. Kityk, Laser-induced piezoelectricity in AgGaGe3xSixSe8 chalcogenide single crystals. Eur. Phys. J. Appl. Phys. 70, 30501 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Chrunik, J. Ebothé, A. Majchrowski, J. Michel, L.R. Jaroszewicz, I.V. Kityk, Optically operated linear electro optical effect in δ- Bi1 – x NdxB3O6 polymer composites. Opt. Commun. 364, 13–17 (2016)CrossRefGoogle Scholar
  16. 16.
    A.R. James, Effect of oxygen assisted sintering on piezoelectric properties of SrBi4Ti4O15 ceramics prepared via high energy mechanochemical processing. Ceram. Int. 41, 5100–5106 (2015)CrossRefGoogle Scholar
  17. 17.
    I.F. Janczarek, I.V. Kityk, B. Sahraoui, D. Kreher, J.Berdowski, Large photo-elastic effect in the modified fullerenes. J. Mod. Opt. 50, 1277–1283 (2003)CrossRefGoogle Scholar
  18. 18.
    K. Ozga, V. Krishnakumar, I.V. Kityk, J. Jasik-Ślęzak, L-lysine monohydrochloride dehydrate as novel elasto- and electro optical materials. Mater. Lett. 62, 4597–4600 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Reben, El.S. Yousef, M. Piasecki, A.A. Albassam, A.M. El-Naggar, G. Lakshminarayana, I.V. Kityk, I. Grelowska. Different modifier oxides effect on the photoluminescence and photoinducedpiezooptics of Er3+–doped fluorotellurite glasses. J. Mater. Sci.: Mater. Electron. 28, 8969–8975 (2017)Google Scholar
  20. 20.
    S. Santoshkumar, R. Kalyanaraman, T. Thangavel, G. Santhoshkumar, I.V. Annadurai, J. Kityk, K. Jedryka, A. Ozga, Slezak. Optically poled SHG and THG effects in cesium doped zinc oxide nanorods. J. Mater. Sci. 29, 15291–15298 (2018)Google Scholar
  21. 21.
    I.V. Kityk, E. Golis, J.Filipecki,J. Wasylak, V.M. Zacharko, Photoinduced nonlinear optical phenomena in PbO-BiO1.5 -GaO1.5glass. J. Mater. Sci. Lett. 14, 1292–1293 (1995)CrossRefGoogle Scholar
  22. 22.
    E. Golis, I.V. Kityk, J. Wasylak, J. Kasperczyk, Nonlinear optical properties of lead-bismuth-gallium glasses. Mater. Res. Bull. 31, 1057–1065 (1996)CrossRefGoogle Scholar
  23. 23.
    R.H. Lambertson, C.A. Lacy, S.D. Gillespie, M.C. Leopold, R.H. Coppage, Gold nanoparticle colorants as traditional ceramic glaze alternatives. J. Am. Ceram. Soc. 100, 3943–3951 (2017)CrossRefGoogle Scholar
  24. 24.
    Ch Meng, G. Ye, L. Zhang, G. Wang, Y. Wang, A facile vapor–solid synthetic route to Sb2O3 fibrils and tubules. Chem. Phy. Lett. 363, 34–38 (2002)CrossRefGoogle Scholar
  25. 25.
    M. Zacharska, A.L. Chuvilin, V.V. Kriventsov, S. Beloshapkin, M. Estrada et al., Support effect for nanosized Au catalysts in hydrogen production from formic acid decomposition. Catal. Sci. Tech. 6, 6853–6860 (2016)CrossRefGoogle Scholar
  26. 26.
    V.A. Burmistrov, V.Yu. Ryabyshev, Yu.M. Ryabyshev, S.S. Neryakhina, Formation of sodium antimonates through the solid-phase Sb2O3-Na2CO3 reaction. Russ. J. Inorg. Chem. 42, 1748–1750 (1997)Google Scholar
  27. 27.
    G. Grier, McCarthy, North Dakota State University, Fargo, North Dakota USA. ICDD Powder diffraction data. Pattern No. 43-1007 (1991)Google Scholar
  28. 28.
    H.E. Swanson, E. Tge, Standard X-ray diffrac-tion powder patterns: Natl. Bur. Standards Circ. 1, 33 (1953)Google Scholar
  29. 29.
    O. Muller, R.E. Newnham, R. Roy, Preliminary study of new crystalline gold oxides. J. Inorg. Nucl. Chem. 31, 2966–2970 (1969)CrossRefGoogle Scholar
  30. 30.
    G.N. Gamyanin, I.Ya. Nekrasov, YuYa Zhdanov, N.V. Leskova, Auroantimonate-A new natural gold compound. Doklady Akad Nauk SSSR. 301, 947–950 (1988)Google Scholar
  31. 31.
    H.D. Wasel-Nielen, R. Hoppe, The crystal structure of Li3AuO3, Li5AuO4, KAuO2 and RbAuO2. Z. Anorg. Allg. Chem. 375, 43–54 (1970)CrossRefGoogle Scholar
  32. 32.
    G. Chem- Dipl, R. Wagner, Hoppe, Oxidation of intermetallic phases: Na3 [AuO2] from NaAu and Na2O2. Z. Anorg Allg. Chem. 549, 26–34 (1987)CrossRefGoogle Scholar
  33. 33.
    H. Mizoguchi, M.W. Patrick, S.H. Byeon, J.B. Parise, Polymorphism in NaSbO3: structure and bonding in metal oxides. J. Am. Chem. Soc. 126, 3175–3184 (2004)CrossRefGoogle Scholar
  34. 34.
    H.D. Dr, R. Stöver, Hoppe, About oxoantimonates (III) and oxobismutates (III) Note: Na3SbO3 and Na3BiO3. Z. Anorg. Allg. Chem. 468, 137–147 (1980)CrossRefGoogle Scholar
  35. 35.
    H. Shi, R. Asahi, C. Stampfl, Properties of the gold oxides Au2O3 and Au2O: first-principles investigation. Phys. Rev. B 75, 205125–205128 (2007)CrossRefGoogle Scholar
  36. 36.
    T. Som, B. Karmakar, Plasmon tuning of nano-Au in dichroic devitrified antimony glass nanocomposites by refractive index control. Chem. Phys. Lett. 479, 100–104 (2009)CrossRefGoogle Scholar
  37. 37.
    K. Terashima, T. Hashimoto, T. Uchino, S.H. Kim, T. Yoko, Structure and nonlinear optical properties of Sb2O3–B2O3 binary glasses. J. Ceram. Soc. Jpn. 104, 1008–1014 (1996)CrossRefGoogle Scholar
  38. 38.
    M.S. Reddy, G.N. Raju, G. Nagarjuna, N. Veeraiah, Structural influence of aluminium, gallium and indium metal oxides by means of dielectric and spectroscopic properties of CaO–Sb2O3–B2O3 glass system. J. Alloys Comp. 438, 41–51 (2007)CrossRefGoogle Scholar
  39. 39.
    T. Satyanarayana, I.V. Kityk, M. Piasecki, M. Brik, N. Veeraiah, Role of titanium valence states in optical and electronic features of PbO–Sb2O3–B2O3:TiO2 glass alloys. J. Alloys Compd. 482, 283–297 (2009)CrossRefGoogle Scholar
  40. 40.
    T. Som, B. Karmakar, Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites. Plasmonics. 5, 149–159 (2010)CrossRefGoogle Scholar
  41. 41.
    G. An, Ch Yang, X. Zhao, Controlled synthesis and optical properties of Au and Au@PS nanoparticles. J. Mater. Sci. 25, 2522–2528 (2014)Google Scholar
  42. 42.
    B. Sahu, R. Dey, P.K. Bajpai, Au3+ ion implantation on FTO coated glasses: effect on structural, electrical, optical andphonon properties. Nucl. Instrum. Method Phys. Res. Sect. B 400, 11–21 (2017)CrossRefGoogle Scholar
  43. 43.
    S.S. Reddy, I.V. Kityk, V. Ravi Kumar, J. Jedryka, K. Ozga, N. Venkatramaiah, N. Veeraiah, Third order nonlinear optical effects ofZnO-ZrO2-B2O3 glass ceramics embedded with ZnZrO3 perovskite crystal phases. J. Mater. Sci. 28, 16403–16414 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Ashok
    • 1
  • I. V. Kityk
    • 2
  • A. Wojciechowski
    • 2
  • M. Srinivasa Reddy
    • 1
  • V. Ravi Kumar
    • 1
  • G. Lakshminarayana
    • 3
  • N. Veeraiah
    • 1
  1. 1.Department of PhysicsAcharya Nagarjuna UniversityGunturIndia
  2. 2.Institute of Optoelectronics and Measuring Systems, Electrical Engineering DepartmentCzestochowa University of TechnologyCzestochowaPoland
  3. 3.Wireless and Photonic Networks Research Centre, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations