Advertisement

Construction and characterization of BiOI/NH2-MIL-125(Ti) heterostructures with excellent visible-light photocatalytic activity

  • Li Han
  • Xiaomin Zhang
  • Deyong Wu
Article
  • 7 Downloads

Abstract

To utilize the synergistic effect between BiOI and NH2-MIL-125(Ti), a series of BiOI/NH2-MIL-125(Ti) heterostructures with different NH2-MIL-125(Ti) contents were fabricated. The characterization of BiOI/NH2-MIL-125(Ti) was performed by XRD, SEM, TEM, FT-IR, XPS and DRS. The results showed that NH2-MIL-125(Ti) catalysts were highly dispersed on the surface of BiOI nanosheets. Compared to pure BiOI and NH2-MIL-125(Ti) photocatalyst, BiOI/NH2-MIL-125(Ti) composites displayed superior visible light photocatalytic activity. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between BiOI nanosheets and NH2-MIL-125(Ti), which significantly suppressed the recombination of photogenerated electron–hole pairs. The optimal content of NH2-MIL-125(Ti) was about 7 wt%, and photocatalytic degradation rate was about 3.8 times and 12.2 times of BiOI and NH2-MIL-125(Ti), respectively. In addition, BiOI/NH2-MIL-125(Ti) composites could keep the photocatalytic activity during the cycle experiment.

Notes

Acknowledgements

This project was funded by the National Natural Science Foundation of China (Grant No. 21767009), Hubei Key Laboratory of Biological Resources Protection and Utilization (PKLHB1703), and Undergraduate Innovation Program of Hubei Province (Grant Nos. 201810517080, 201810517033).

References

  1. 1.
    R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, J. Alloys Compd. 753, 300–307 (2018)CrossRefGoogle Scholar
  2. 2.
    R. Nasri, T. Larbi, M. Amlouk, M.F. Zid, J. Mater. Sci. Mater. Electron. 29, 18372–18379 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Gan, Y. Wei, J. Xiong, G. Cheng, Chem. Eng. J. 349, 1–16 (2018)CrossRefGoogle Scholar
  4. 4.
    H.V. Vasei, S.M. Masoudpanah, M. Adeli, M.R. Aboutalebi, Ceram. Int. 44, 7741–7745 (2018)CrossRefGoogle Scholar
  5. 5.
    Y.C. Chang, J.C. Lin, S.H. Wu, J. Alloys Compd. 749, 955–960 (2018)CrossRefGoogle Scholar
  6. 6.
    G. Mamba, A.K. Mishra, Appl. Catal. B. 198, 347–377 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Saison, N. Chemin, C. Chaneac, O. Durupthy, L. Mariey, F. Mauge, V. Brezova, J.P. Jolivet, J. Phys. Chem. C 119, 12967–12977 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Xu, H. Chen, C. Xu, D. Wu, Z. Gao, Q. Zhang, K. Jiang, J. Colloid Interface Sci. 525, 97–106 (2018)CrossRefGoogle Scholar
  9. 9.
    G.J. Wu, Y. Zhao, Y.W. Li, B. Souvanhthong, H.M. Ma, J.Z. Zhao, Ceram. Int. 44, 5392–5401 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Xu, Y.G. Mao, T. Liu, Y. Peng, Crystengcomm 20, 2292–2298 (2018)CrossRefGoogle Scholar
  11. 11.
    H.C. Lan, G. Zhang, H.W. Zhang, H.J. Liu, R.P. Liu, J.H. Qu, Catal. Commun. 98, 9–12 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Lu, J. Wu, W.X. Xu, H.Q. Cheng, X.M. Qi, Q.W. Li, Y.A. Zhang, Y. Guan, Y. Ling, Z. Zhang, Mater. Lett. 219, 260–264 (2018)CrossRefGoogle Scholar
  13. 13.
    P. Intaphong, A. Phuruangrat, S. Thongtem, T. Thongtem, Mater. Lett. 213, 88–91 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Dehghan, M.H. Dehghani, R. Nabizadeh, N. Ramezanian, M. Alimohammadi, A.A. Najafpoor, Chem. Eng. Res. Des. 129, 217–230 (2018)CrossRefGoogle Scholar
  15. 15.
    X.J. Zhou, C.L. Shao, S. Yang, X.W. Li, X.H. Guo, X.X. Wang, X.H. Li, Y.C. Liu, Acs Sustain. Chem. Eng. 6, 2316–2323 (2018)CrossRefGoogle Scholar
  16. 16.
    X.J. Wen, C.G. Niu, L. Zhang, G.M. Zeng, Dalton Trans. 46, 4982–4993 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Prabha, K. Usharani, S. Ilangovan, V. Narasimman, S. Balamurugan, M. Suganya, J. Srivind, V.S. Nagarethinam, A.R. Balu, J. Mater. Sci. Mater. Electron 29, 18708–18717 (2018)CrossRefGoogle Scholar
  18. 18.
    L. Yosefi, M. Haghighi, Appl. Catal. B. 220, 367–378 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Malathi, P. Arunachalam, A.N. Grace, J. Madhavan, A.M. Al-Mayouf, Appl. Surf. Sci. 412, 85–95 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Sun, Q. Yan, Y. Shao, C.Q. Wang, T. Yan, P.G. Ji, B. Du, Appl. Surf. Sci. 416, 288–295 (2017)CrossRefGoogle Scholar
  21. 21.
    I. Ahmed, N.A. Khan, J.W. Yoon, J.S. Chang, S.H. Jhung, ACS Appl. Mat. Int. 9, 20938–20946 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Sarker, J.Y. Song, S.H. Jhung, J. Hazard. Mater. 335, 162–169 (2017)CrossRefGoogle Scholar
  23. 23.
    S.A.A. Razavi, M.Y. Masoomi, A. Morsali, Chem. Eur. J. 23, 12559–12564 (2017)CrossRefGoogle Scholar
  24. 24.
    F.M. Khandan, D. Afzali, G. Sargazi, M. Gordan, J. Mater. Sci. Mater. Electron. 29, 18600–18613 (2018)CrossRefGoogle Scholar
  25. 25.
    K. Guesh, C.A.D. Caiuby, A. Mayoral, M. Diaz-Garcia, I. Diaz, M. Sanchez, Cryst. Growth Des. 17, 1806–1813 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Racles, M.F. Zaltariov, M. Iacob, M. Silion, M. Avadanei, A. Bargan, Appl. Catal. B. 205, 78–92 (2017)CrossRefGoogle Scholar
  27. 27.
    X.C. Liu, Y.Y. Zhou, J.C. Zhang, L. Tang, L. Luo, G.M. Zeng, ACS Appl. Mat. Int. 9, 20255–20275 (2017)CrossRefGoogle Scholar
  28. 28.
    A.M. Plonka, Q. Wang, W.O. Gordon, A. Balboa, D. Troya, W.W. Guo, C.H. Sharp, S.D. Senanayake, J.R. Morris, C.L. Hill, A.I. Frenkel, J. Am. Chem. Soc. 139, 599–602 (2017)CrossRefGoogle Scholar
  29. 29.
    E. Yilmaz, E. Sert, F.S. Atalay, Catal. Commun. 100, 48–51 (2017)CrossRefGoogle Scholar
  30. 30.
    C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D’arras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, A. Walsh, J. Am. Chem. Soc. 135, 10942–10945 (2013)CrossRefGoogle Scholar
  31. 31.
    M.B. Chambers, X. Wang, L. Ellezam, O. Ersen, M. Fontecave, C. Sanchez, L. Rozes, C. Mellot-Draznieks, J. Am. Chem. Soc. 139, 8222–8228 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Hu, M. Liu, K.Y. Li, C.S. Song, G.L. Zhang, X.W. Guo, Rsc Adv. 7, 581–587 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Wang, L. Yang, J. Yuan, L. He, Y. Song, H. Zhang, Z. Zhang, S. Fang, RSC Adv 8, 12459–12470 (2018)CrossRefGoogle Scholar
  34. 34.
    Z.Y. Wu, X.B. Huang, H.Y. Zheng, P. Wang, G.T. Hai, W.J. Dong, G. Wang, Appl. Catal. B 224, 479–487 (2018)CrossRefGoogle Scholar
  35. 35.
    R.M. Abdelhameed, D.M. Tobaldi, M. Karmaoui, J. Photoch. Photobiol. A Chem. 351, 50–58 (2018)CrossRefGoogle Scholar
  36. 36.
    S.R. Zhu, P.F. Liu, M.K. Wu, W.N. Zhao, G.C. Li, K. Tao, F.Y. Yi, L. Han, Dalton Trans. 45, 17521–17529 (2016)CrossRefGoogle Scholar
  37. 37.
    H. Wang, X.Z. Yuan, Y. Wu, G.M. Zeng, H.R. Dong, X.H. Chen, L.J. Leng, Z.B. Wu, L.J. Peng, Appl. Catal. B 186, 19–29 (2016)CrossRefGoogle Scholar
  38. 38.
    X.Y. Li, Y.H. Pi, Q.Q. Hou, H. Yu, Z. Li, Y.W. Li, J. Xiao, Chem. Commun. 54, 1917–1920 (2018)CrossRefGoogle Scholar
  39. 39.
    B.K. Liu, Y.J. Wu, X.L. Han, J.H. Lv, J.T. Zhang, H.Z. Shi, J. Mater. Sci: Mater. Electron. 29, 17591–17601 (2018)Google Scholar
  40. 40.
    L.X. Hu, G.H. Deng, W.C. Lu, S.W. Pang, X. Hu, D Appl. Surf. Sci. 410, 401–413 (2017)CrossRefGoogle Scholar
  41. 41.
    B.X. Zhang, J.L. Zhang, X.N. Tan, D. Shao, J.B. Shi, L.R. Zheng, J. Zhang, G.Y. Yang, B.X. Han, ACS Appl. Mat. Int. 10, 16418–16423 (2018)CrossRefGoogle Scholar
  42. 42.
    H.W. Huang, K. Xiao, X. Du, Y.H. Zhang, Acs Sustain. Chem. Eng. 5, 5253–5264 (2017)CrossRefGoogle Scholar
  43. 43.
    N. Wang, L. Shi, L.Z. Yao, C.Y. Lu, Y. Shi, J.M. Sun, RSC Adv. 8, 537–546 (2018)CrossRefGoogle Scholar
  44. 44.
    T.T. He, D.Y. Wu, Y.B. Tan, Mater. Lett. 165, 227–230 (2016)CrossRefGoogle Scholar
  45. 45.
    M.J. Islam, H.K. Kim, D.A. Reddy, Y. Kim, R. Ma, H. Baek, J. Kim, T.K. Kim, Dalton Trans. 46, 6013–6023 (2017)CrossRefGoogle Scholar
  46. 46.
    T. He, D. Wu, Y. Tan, H. Tan, Mater. Lett. 193, 210–212 (2017)CrossRefGoogle Scholar
  47. 47.
    Z.Y. You, Q.H. Shen, Y.X. Su, Y. Yu, H. Wang, T. Qin, F. Zhang, D. Cheng, H. Yang, New J. Chem. 42, 489–496 (2018)CrossRefGoogle Scholar
  48. 48.
    D. Wu, C. HuiyuanWang, J. Li, X. Xia, W. Song, Huang, Surf. Coat. Technol. 258, 672–676 (2014)CrossRefGoogle Scholar
  49. 49.
    J. Liu, L. Ruan, S.B. Adeloju, Y. Wu, Dalton Trans. 43, 1706–1715 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Wang, Y. Long, D. Zhang, ACS Sustain. Chem. Eng. 5, 2454–2462 (2017)CrossRefGoogle Scholar
  51. 51.
    H. Liu, J. Zhang, D. Ao, Appl. Catal. B 221, 433–442 (2018)CrossRefGoogle Scholar
  52. 52.
    K.H. Reddy, S. Martha, K.M. Parida, Inorg. Chem. 52, 6390–6401 (2013)CrossRefGoogle Scholar
  53. 53.
    Z.M. Liu, Y.C. Wu, J.T. Chen, Y.R. Li, J.Y. Zhao, K.H. Gao, P. Na, Catal. Sci. Technol. 8, 1936–1944 (2018)CrossRefGoogle Scholar
  54. 54.
    B. Babu, V.V.N. Harish, J. Shim, C.V. Reddy, J. Mater. Sci: Mater. Electron. 29, 16988–16996 (2018)Google Scholar
  55. 55.
    Q.H. Zhao, X.Y. Liu, Y.X. Xing, Z.L. Liu, C.F. Du, Catal. Sci. Technol. 52, 2117–2130 (2017)Google Scholar
  56. 56.
    X.X. Wang, Q. Ni, D.W. Zeng, G.L. Liao, Y.W. Wen, B. Shan, C.S. Xie, Appl. Surf. Sci. 396, 590–598 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental EngineeringHubei University for NationalitiesEnshiChina

Personalised recommendations