Advertisement

Effect of substrate temperature on growth and properties of Cu2MnSnS4 thin films prepared by chemical spray pyrolysis

  • Longying NieEmail author
  • Jiandong Yang
  • Doudou Yang
  • Sheng LiuEmail author
Article
  • 26 Downloads

Abstract

Homogeneous Cu2MnSnS4 (CMTS) thin films have been deposited onto glass substrates via the chemical spray pyrolysis approach. The influence of substrate temperature on growth and properties of the as-prepared CMTS thin films has been carefully studied by the X-ray diffraction, scanning electron microscopy, UV–Vis-NIR absorption spectroscopy, and Hall effect measurement. As a result, the substrate temperature of 360 °C becomes most suitable for depositing the high-quality CMTS thin films, which exhibit the typical band gap of 1.19 eV, carrier concentration of 9.58 × 1020 cm−3, carrier mobility of 4.26 cm2 (V s)−1, and electrical resistivity of 1.89 × 10−3 Ω cm. Thus, the present CMTS films have a great potential to become the promising candidate of photovoltaic absorber materials.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51402242) and Natural science foundation of Gansu province (Grant No. 17JR5RK008).

References

  1. 1.
    M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Energy Environ. Sci. 7, 1029 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Ghosh, D.K. Chaudhary, A. Biswas, R. Thangavel, G. Udayabhanu, RSC Adv. 6, 115204 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Chatterjee, A.J. Pal, Sol. Energy Mater. Sol. Cells 160, 233 (2017)CrossRefGoogle Scholar
  4. 4.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. 21, 72 (2013)CrossRefGoogle Scholar
  5. 5.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Guan, H. Hou, M. Li, J. Cui, Mater. Lett. 188, 319 (2017)CrossRefGoogle Scholar
  7. 7.
    K. Liu, B. Yao, Y. Li, Z. Ding, Z. Xiao, Y. Jiang, G. Wang, D. Pan, N. J. Chem. 41, 685 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, RSC Adv. 6, 96025 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Ozel, J. Alloys Compd. 657, 157 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Ozel, E. Aslan, B. Istanbullu, O. Akay, I.Hatay Patir, Appl. Catal. B 198, 67 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Cui, R. Deng, G. Wang, D. Pan, J. Mater. Chem. 22, 23136 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Courel, E. Valencia-Resendiz, J.A. Andrade-Arvizu, E. Saucedo, O. Vigil-Galán, Sol. Energy Mater. Sol. Cells 159, 151 (2017)CrossRefGoogle Scholar
  13. 13.
    T.H. Nguyen, S. Fujikawa, T. Harada, J. Chantana, T. Minemoto, S. Nakanishi, S. Ikeda, ChemSusChem 9, 2414 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Dong, W. Meng, J. Qi, M. Wang, Mater. Lett. 189, 104 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Chem. Commun. 48, 2603 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Zhou, Z. Ye, Y. Wang, Q. Yi, J. Wen, Mater. Lett. 140, 119 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Shi, Y. Li, C. Wu, R.-K. Zheng, ChemPlusChem 80, 1537 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Chen, H. Deng, J. Tao, W. Zhou, L. Sun, F. Yue, P. Yang, J. Chu, J. Alloys Compd. 640, 23 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Li, Y. Wang, G. Jiang, W. Liu, C. Zhu, Mater. Lett. 157, 27 (2015)CrossRefGoogle Scholar
  20. 20.
    C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, F.M. Zhang, Mater. Lett. 166, 101 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Yu, H. Deng, J. Tao, L. Chen, H. Cao, L. Sun, P. Yang, J. Chu, Mater. Lett. 191, 186 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, RSC Adv. 2, 5044 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Le Donne, S. Marchionna, M. Acciarri, F. Cernuschi, S. Binetti, Sol. Energy 149, 125 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Meng, H. Deng, J. He, L. Sun, P. Yang, J. Chu, Mater. Lett. 151, 61 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Meng, H. Deng, J. Tao, H. Cao, X. Li, L. Sun, P. Yang, J. Chu, J. Alloys Compd. 680, 446 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Xie, C. Zhang, G. Yang, J. Yang, X. Zhou, J. Ma, J. Alloys Compd. 696, 938 (2017)CrossRefGoogle Scholar
  27. 27.
    K. Mokurala, S. Mallick, P. Bhargava, J. Power Sources 305, 134 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Marchionna, A. Le Donne, M. Merlini, S. Binetti, M. Acciarri, F. Cernuschi, J. Alloys Compd. 693, 95 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Chen, H. Deng, J. Tao, H. Cao, L. Sun, P. Yang, J. Chu, Acta Mater. 109, 1 (2016)CrossRefGoogle Scholar
  30. 30.
    R.R. Prabhakar, S. Zhenghua, Z. Xin, T. Baikie, L.S. Woei, S. Shukla, S.K. Batabyal, O. Gunawan, L.H. Wong, Sol. Energy Mater. Sol. Cells 157, 867 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Nie, S. Liu, Y. Chai, R. Yuan, J. Anal. Appl. Pyrolysis 112, 363 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Liu, H. Xu, L. Nie, Y. Ren, R. Yuan, Mater. Sci. Semicond. Process. 40, 20 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Liu, X. Wang, L. Nie, L. Chen, R. Yuan, Thin Solid Films 585, 72 (2015)CrossRefGoogle Scholar
  34. 34.
    K.O. Ukoba, A.C. Eloka-Eboka, F.L. Inambao, Renew. Sust. Energ. Rev. 82, 2900 (2018)CrossRefGoogle Scholar
  35. 35.
    R.R. Prabhakar, N. Huu Loc, M.H. Kumar, P.P. Boix, S. Juan, R.A. John, S.K. Batabyal, L.H. Wong, ACS Appl. Mater. Interfaces 6, 17661 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Adelifard, J. Anal. Appl. Pyrolysis 122, 209 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Zhao, X. Peng, Y. Ding, X. Liang, J. Min, L. Wang, W. Shi, Mater. Sci. Semicond. Process. 16, 1472 (2013)CrossRefGoogle Scholar
  38. 38.
    D. Han, Y.Y. Sun, J. Bang, Y.Y. Zhang, H.-B. Sun, X.-B. Li, S.B. Zhang, Phys. Rev. B 87, 155206 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Longnan Teachers College, School of Agriculture and Forestry TechnologyLongnanChina
  2. 2.Sichuan Research Center of New MaterialsInstitute of Chemical Materials, China Academy of Engineering PhysicsChengduChina

Personalised recommendations