Advertisement

Simple and environmentally-friendly synthesis of graphene–CdS hierarchical nanospheres and their photocatalytic performance

  • Bin ZengEmail author
  • Wanfeng Liu
  • Wujun Zeng
Article
  • 9 Downloads

Abstract

Synergistic combination of graphene and CdS hierarchical nanospheres results in significant enhancement of photocatalytic properties. In this work, environment-friendly graphene–CdS hierarchical nanospheres (G–CdS HN) were synthesized. The morphology, crystalline phases, and photocatalytic applications of G–CdS HN were studied in detail. G–CdS HN demonstrated excellent photocatalytic activity under visible light irradiation. The growth mechanism of CdS hierarchical nanospheres was also studied. This simple and environmental-friendly method can be extended to prepare other graphene-based metal chalcogenide nanocomposites for a wide range of applications.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC, No. 50972043), the Construct Program of the Key Discipline in Hunan Province and Project of the Natural Science Foundation of Hunan Province (2017JJ2191), General Project of Hunan Provincial Education Department (14C0793).

References

  1. 1.
    C.S. Chen, W.W. Yu, T.G. Liu et al., Sol. C. 160, 43 (2017)Google Scholar
  2. 2.
    W.W. Yu, X.A. Chen, W. Mei et al., Appl. Surf. Sci. 400, 129–138 (2017)CrossRefGoogle Scholar
  3. 3.
    S.P. Zhang, J. Xu, J. Hu et al., Langmuir 33, 5015 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Nourbakhsh, S. Abbaspour, M. Masood et al., Ceram. Int. 42, 11901 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Cao, T.G. Liu, Y.H. Tsang et al., Appli. Surf. Sci. 382, 225 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Mei, M. Lin, C.S. Chen et al., J. Nanopart. Res. 20(11), 286 (2018)CrossRefGoogle Scholar
  7. 7.
    C.S. Chen, S.Y. Cao, H. Long et al. J Mater. Sci-Mater. EL. 26, 3385 (2015)CrossRefGoogle Scholar
  8. 8.
    C.D. Liang, N.J. Dudney, J.Y. Howe, Chem. Mater. 21(19), 4724 (2009)CrossRefGoogle Scholar
  9. 9.
    X.C. Song, Y. Zhao, Y.F. Zheng, Cryst. Growth Des. 7, (1) 159 (2007)CrossRefGoogle Scholar
  10. 10.
    C. Ramprasad, L. Philip, Chem. Eng. J 334(15), 322 (2018)CrossRefGoogle Scholar
  11. 11.
    C.H. Deng, X.Q. Ge, H.M. Hu et al., CrystEngComm 16, 2738 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.X. Guo, S.W. Lin, X.L. Li et al., Appl. Surf. Sci. 384(30), 83 (2016)CrossRefGoogle Scholar
  13. 13.
    J.Z. Zhong, Q.Y. Wang, D.Q. Chen et al., Appl. Surf. Sci. 343(15), 28 (2015)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Zhang, R.D. Xu, Z.G. Wang et al., ACS Appl. Mater. Interfaces. 9(40), 34736 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Zhang, Y.X. Lin, C.D. Wang et al., J. Phys. Chem. C 120(24), 13120 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Zeng, W.J. Zeng, W.F. Liu et al., J. Phys. Chem. Solids 115, 97 (2018)CrossRefGoogle Scholar
  17. 17.
    F.Z. Liu, X. Shao, J.Q. Wang et al., J. Alloys Compd. 551, 327 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Dacula Mangadlao, P.F. Cao, D. Choi et al., ACS Appl. Mater. Interface 9, 24887 (2017)CrossRefGoogle Scholar
  19. 19.
    B. Zeng, H. Long, Nano 9(8), 1450097 (2014)CrossRefGoogle Scholar
  20. 20.
    W.K. Jo, N.C. Selvam, J. Hazard. Mater. 299, 462 (2015)CrossRefGoogle Scholar
  21. 21.
    M.E. Khan, M.M. Khan, M.H. Cho, J Colloid Interfaces Sci. 482, 221 (2016)CrossRefGoogle Scholar
  22. 22.
    Q.Z. Wang, J.H. Lian, J.J. Li et al., Sci. Rep. 5, 13593 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical EngineeringHunan University of Arts and ScienceChangdePeople’s Republic of China
  2. 2.Hunan Collaborative Innovation Center for Construction and Development of Dongting Lake Ecological Economic ZoneChangdePeople’s Republic of China

Personalised recommendations