Advertisement

Design of Gd2O3 nanorods: a challenging photocatalyst for the degradation of neurotoxicity chloramphenicol drug

  • S. Dhanalakshmi
  • P. Senthil Kumar
  • S. KaruthapandianEmail author
  • V. Muthuraj
  • N. Prithivikumaran
Article
  • 10 Downloads

Abstract

In the present study, a gadolinium oxide (Gd2O3) nanorod was successfully synthesized by simple hydrothermal method for the photocatalytic degradation of chloramphenicol (CAP) drug under UV light illumination. Interestingly, the rod like morphology was observed from the TEM images with the particle size of 20 nm. The XRD results suggested that the high crystalline nature of the Gd2O3 nanorods with the crystalline size of 13 nm. The XPS results confirmed the formation of Gd2O3 nanorods and the oxidation states of different elements were addressed. The photocatalytic degradation of CAP was performed under ultra violet light illumination on Gd2O3 nanorods surfaces. The Gd2O3 nanorods were showed enhanced efficacy compared to the standard TiO2 under UV light illumination. The photocatalytic degradation results revealed that the drug was degraded within a short span of time. 50 mg of Gd2O3 nanorods and 20 mg/mL of drug concentration were the optimized condition for the effective photocatalytic degradation. The reactive oxidative species actively involved in the photodegradation of CAP was ·OH and up to 5th recycle the Gd2O3 nanorods were possessed excellent stability.

References

  1. 1.
    P. Wang, P.S. Yap, T.T. Lim, Appl. Catal. A 399, 252 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, W. Cai, J. Hazard. Mater. 171, 678 (2009)CrossRefGoogle Scholar
  3. 3.
    X. Yu, Z. Lu, D. Wu, P. Yu, M. He, T. Chen, W. Shi, P. Huo, Y. Yan, Y. Feng, React. Kinet. Mech. Catal. 111, 347 (2013)CrossRefGoogle Scholar
  4. 4.
    P. Baumann, J. Bacteriol. 96, 39 (1968)Google Scholar
  5. 5.
    E. Berezin, J. Hosp. Infect. 30, 441 (1995)CrossRefGoogle Scholar
  6. 6.
    H. Liu, G. Zhang, C.-Q. Liu, L. Li, M. Xiang, J. Environ. Monit. 11, 1199 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Hirsh, T. Ternes, K. Haberer, K.-L. Kratz, Sci. Total Environ. 225, 109 (1999)CrossRefGoogle Scholar
  8. 8.
    E. Inam, N.-A. Offiong, S. Kang, P. Yang, J. Essien, Bull. Environ. Contam. Toxicol. 95, 624 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele, Aquat. Toxicol. 68, 141 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Cleuvers, Ecotoxicol. Environ. Saf. 59, 309 (2004)CrossRefGoogle Scholar
  11. 11.
    C. Walling, Acc. Chem. Res. 8, 125 (1975)CrossRefGoogle Scholar
  12. 12.
    M.M. Sein, M. Zedda, J. Tuerk, T.C. Schmidt, A. Golloch, C.V. Sonntag, Environ. Sci. Technol. 42, 6656 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Zwiener, H. Frimmel, Water Res. 34, 1881 (2000)CrossRefGoogle Scholar
  14. 14.
    D. Vogna, R. Marotta, A. Napolitano, R. Anderozzi, M. Ischia, Water Res. 38, 414 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Ravina, L. Campanella, J. Kiwi, Water Res. 36, 3553 (2002)CrossRefGoogle Scholar
  16. 16.
    L.A. Perez-Estrada, S. Malato, W. Gernjak, A. Aguera, E.M. Thurman, I. Ferrer, A.R. Fernandez-Alba, Environ. Sci. Technol. 39, 8300 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Hartmann, P. Bartels, U. Mau, M. Witter, W.v. Tümpling, J. Hofmann, E. Nietzschmann, Chemosphere 70, 453 (2008)CrossRefGoogle Scholar
  18. 18.
    Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, J. Hazard. Mater. 166, 138 (2009)CrossRefGoogle Scholar
  19. 19.
    A.A. Ismail, Appl. Catal. B 85, 33 (2008)CrossRefGoogle Scholar
  20. 20.
    A.A. Ismail, Appl. Catal. B 58, 115 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Yang, C.X. Li, Z.Y. Cheng, X.M. Zhang, Z.W. Quan, C.M. Zhang, J. Lin, J. Phys. Chem. C 111, 18148 (2007)CrossRefGoogle Scholar
  22. 22.
    G. Jia, K. Liu, Y.H. Zheng, Y.H. Song, M. Yang, H. You, J. Phys. Chem. C 113, 6050 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Guo, N. Dong, M. Yin, W.P. Zhang, L.R. Lou, S.D. Xia, J. Phys. Chem. B 108, 19205 (2004)CrossRefGoogle Scholar
  24. 24.
    H. Guo, X.D. Yang, T. Xiao, W.P. Zhang, L.R. Lou, J. Mugnier, Appl. Surf. Sci. 230, 215 (2004)CrossRefGoogle Scholar
  25. 25.
    C. Louis, R. Bazzi, M.A. Flores, W. Zheng, K. Lebbou, B. Mercier, C. Dujardin, P. Perriat, J. Solid State Chem. 173, 335 (2003)CrossRefGoogle Scholar
  26. 26.
    X.Y. Ye, W.G. Gao, L.B. Xia, H.P. Nie, W.D. Zhuang, J. Rare Earths 28, 345 (2010)CrossRefGoogle Scholar
  27. 27.
    C.R. Michel, N.L. Lopez-Contreras, A.H. Martinez-Preciado, Sens. Actuators B 177, 390 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Paek, C.H. Lee, J. Choi, S. Choi, A. Kim, J.W. Lee, K. Lee, Cryst. Growth Des. 7, 1378 (2007)CrossRefGoogle Scholar
  29. 29.
    M.A. Ballem, F. Söderlind, P. Nordblad, P.O. Kall, M. Oden, Microporous Mesoporous Mater. 168, 221 (2013)CrossRefGoogle Scholar
  30. 30.
    A.T.M.A. Rahman, K. Vasilev, P. Majewski, J. Colloid Interface Sci. 354, 592 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Barreca, Surf. Sci. Spectra 14, 60–67 (2007)CrossRefGoogle Scholar
  32. 32.
    P. Latha, R. Dhanabackialakshmi, P.S. Kumar, S. Karuthapandian, Sep. Purif. Technol. 168, 133 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Vahini, P.S. Kumar, S. Karuthapandian, Appl. Phys. A 122(1–8), 744 (2016)CrossRefGoogle Scholar
  34. 34.
    P.S. Kumar, M. Selvakumar, S.G. Babu, S. Induja, S. Karuthapandian, J. Alloys Compd. 701, 562 (2017)CrossRefGoogle Scholar
  35. 35.
    P.S. Kumar, S. Karuthapandian, M. Umadevi, A. Elangovan, V. Muthuraj, Mater. Focus 5, 128 (2016)CrossRefGoogle Scholar
  36. 36.
    P. Senthil Kumar, S. Lakshmi Prabavathi, P. Indurani, S. Karuthapandian, V. Muthuraj, Sep. Purif. Technol. 172, 192 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Dhanalakshmi
    • 1
  • P. Senthil Kumar
    • 2
  • S. Karuthapandian
    • 1
    Email author
  • V. Muthuraj
    • 1
  • N. Prithivikumaran
    • 3
  1. 1.Department of ChemistryVHNSN CollegeVirudhunagarIndia
  2. 2.Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia
  3. 3.Nanoscience Research Lab, Department of PhysicsVHNSN CollegeVirudhunagarIndia

Personalised recommendations