Advertisement

Structural and morphological changes in binder-free MnCo2O4 electrodes for supercapacitor applications: effect of deposition parameters

  • N. C. Maile
  • S. K. Shinde
  • R. T. Patil
  • A. V. Fulari
  • R. R. Koli
  • D.-Y. KimEmail author
  • D. S. Lee
  • V. J. FulariEmail author
Article
  • 30 Downloads

Abstract

In the present work, binder-free MnCo2O4 nanoflakes were prepared using a cost-effective potentiostatic mode of electrodeposition. Structural and microstructural features of the prepared MnCo2O4 samples were examined by different characterization techniques including X-ray diffraction, Raman, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and supercapacitive testing. The morphological investigation revealed that a unique nanoflake-like structure with uniform morphology. The electrochemical properties of MnCo2O4 nanoflakes were investigated by cyclic voltammetry, galvanostatic charge discharge and electrochemical impedance spectroscopy. The maximum specific capacitance observed for the MnCo2O4 thin films was 585 F g−1 for a current density of 0.2 mA cm−2. Our results indicate that the MnCo2O4 electrode has potential for application in supercapacitors.

Notes

Acknowledgements

The authors are grateful to UGC, India for financial assistance as a UGC major research project (F.No. 43-532/2014).

Supplementary material

10854_2018_655_MOESM1_ESM.docx (135 kb)
Supplementary material 1 (DOCX 135 KB)

References

  1. 1.
    D.P. Dubal, Y.P. Wu, R. Holze, Supercapacitors: from the Leyden jar to electric busses. ChemTexts 2, 13 (2016).  https://doi.org/10.1007/s40828-016-0032-6 CrossRefGoogle Scholar
  2. 2.
    S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 732, 80–85 (2014).  https://doi.org/10.1016/j.jelechem.2014.09.004 CrossRefGoogle Scholar
  3. 3.
    S. Zhang, N. Pan, S.P. Evaluation, Supercapacitors performance evaluation. Adv. Energy Mater. 5, 1401401 (2015).  https://doi.org/10.1002/aenm.201401401 CrossRefGoogle Scholar
  4. 4.
    L. Ma, Y. Yang, Solid-state supercapacitors for electronic device applications. Appl. Phys. Lett. 87, 123503 (2005).  https://doi.org/10.1063/1.2051797 CrossRefGoogle Scholar
  5. 5.
    M.I. Ionescu, X. Sun, B. Luan, Multilayer graphene synthesized using magnetron sputtering for planar supercapacitor application. Can. J. Chem. 93, 160–164 (2015).  https://doi.org/10.1139/cjc-2014-0297 CrossRefGoogle Scholar
  6. 6.
    D. Hulicova-Jurcakova, X. Li, Z. Zhu, R. de Marco, G.Q. Lu, Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) Method and their electrochemical performances in supercapacitors. Energy Fuels 22, 4139–4145 (2008).  https://doi.org/10.1021/ef8004306 CrossRefGoogle Scholar
  7. 7.
    W. Zhou, J. Zhang, T. Xue, D. Zhao, H. Li, Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J. Mater. Chem. 18, 905 (2008).  https://doi.org/10.1039/b715070a CrossRefGoogle Scholar
  8. 8.
    K. Hua, X. Li, D. Fang, J. Yi, R. Bao, Z. Luo, Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery. Appl. Surf. Sci. 447, 610–616 (2018).  https://doi.org/10.1016/j.apsusc.2018.04.043 CrossRefGoogle Scholar
  9. 9.
    J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127–135 (2014).  https://doi.org/10.1016/j.electacta.2014.03.158 CrossRefGoogle Scholar
  10. 10.
    X. Guo, X. Li, Z. Xiong, C. Lai, Y. Li, X. Huang, H. Bao, Y. Yin, Y. Zhu, D. Zhang, A comprehensive investigation on electrophoretic self-assembled nano-Co3O4 films in aqueous solution as electrode materials for supercapacitors. J. Nanoparticle Res. 18, 144 (2016).  https://doi.org/10.1007/s11051-016-3456-4 CrossRefGoogle Scholar
  11. 11.
    G.-S. Jang, S. Ameen, M.S. Akhtar, H.-S. Shin, Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44, 588–595 (2018).  https://doi.org/10.1016/j.ceramint.2017.09.217 CrossRefGoogle Scholar
  12. 12.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013).  https://doi.org/10.1021/am400012h CrossRefGoogle Scholar
  13. 13.
    Z. Zhu, J. Ping, X. Huang, J. Hu, Q. Chen, X. Ji, C.E. Banks, Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. J. Mater. Sci. 47, 503–507 (2012).  https://doi.org/10.1007/s10853-011-5826-8 CrossRefGoogle Scholar
  14. 14.
    X. Guo, J. Han, L. Zhang, P. Liu, A. Hirata, L. Chen, T. Fujita, M. Chen, A nanoporous metal recuperated MnO2 anode for lithium ion batteries. Nanoscale 7, 15111–15116 (2015).  https://doi.org/10.1039/C5NR05011A CrossRefGoogle Scholar
  15. 15.
    M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A. 3, 21380–21423 (2015).  https://doi.org/10.1039/C5TA05523G CrossRefGoogle Scholar
  16. 16.
    Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, Y.-W. Yang, Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5, 1667–1689 (2015).  https://doi.org/10.3390/nano5041667 CrossRefGoogle Scholar
  17. 17.
    D.S. Baji, H.S. Jadhav, S.V. Nair, A.K. Rai, Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries. J. Solid State Chem. 262, 191–198 (2018).  https://doi.org/10.1016/j.jssc.2018.03.022 CrossRefGoogle Scholar
  18. 18.
    Y. Dong, Y. Wang, Y. Xu, C. Chen, Y. Wang, L. Jiao, H. Yuan, Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor. Electrochim. Acta 225, 39–46 (2017).  https://doi.org/10.1016/j.electacta.2016.12.109 CrossRefGoogle Scholar
  19. 19.
    D. Darbar, M.R. Anilkumar, V. Rajagopalan, I. Bhattacharya, H.I. Elim, T. Ramakrishnappa, F.I. Ezema, R. Jose, M.V. Reddy, Studies on spinel cobaltites, MCo2O4 (M = Mn, Zn, Fe, Ni and Co) and their functional properties. Ceram. Int. 44, 4630–4639 (2018).  https://doi.org/10.1016/j.ceramint.2017.12.010 CrossRefGoogle Scholar
  20. 20.
    N. Padmanathan, S. Selladurai, Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics (Kiel) 20, 479–487 (2014).  https://doi.org/10.1007/s11581-013-1009-8 CrossRefGoogle Scholar
  21. 21.
    M. Li, W. Yang, J. Li, M. Feng, W. Li, H. Li, Y. Yu, Porous layered stacked MnCo2O4 cubes with enhanced electrochemical capacitive performance. Nanoscale 10, 2218–2225 (2018).  https://doi.org/10.1039/C7NR08239H CrossRefGoogle Scholar
  22. 22.
    L.-B. Kong, C. Lu, M.-C. Liu, Y.-C. Luo, L. Kang, X. Li, F.C. Walsh, The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochim. Acta 115, 22–27 (2014).  https://doi.org/10.1016/j.electacta.2013.10.089 CrossRefGoogle Scholar
  23. 23.
    C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, X. Xu, NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7, 41 (2017).  https://doi.org/10.3390/nano7020041 CrossRefGoogle Scholar
  24. 24.
    N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018).  https://doi.org/10.1016/j.cej.2018.03.147 CrossRefGoogle Scholar
  25. 25.
    D.P. Dubal, N.R. Chodankar, R. Holze, D.H. Kim, P. Gomez-Romero, Ultrathin mesoporous RuCo2O4 nanoflakes: an advanced electrode for high-performance asymmetric supercapacitors, ChemSusChem 10, 1771–1782 (2017).  https://doi.org/10.1002/cssc.201700001 CrossRefGoogle Scholar
  26. 26.
    N.R. Chodankar, D.P. Dubal, S.-H. Ji, D.-H. Kim, Superfast electrodeposition of newly developed RuCo2O4 nanobelts over low-cost stainless steel mesh for high-performance aqueous supercapacitor. Adv. Mater. Interfaces 5, 1800283 (2018).  https://doi.org/10.1002/admi.201800283 CrossRefGoogle Scholar
  27. 27.
    N.R. Chodankar, D.P. Dubal, Y. Kwon, D.-H. Kim, Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Mater. 9, e419 (2017).  https://doi.org/10.1038/am.2017.145 CrossRefGoogle Scholar
  28. 28.
    S.G. Mohamed, S.Y. Attia, H.H. Hassan, Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater. 251, 26–33 (2017).  https://doi.org/10.1016/j.micromeso.2017.05.035 CrossRefGoogle Scholar
  29. 29.
    W. Li, K. Xu, G. Song, X. Zhou, R. Zou, J. Yang, Z. Chen, J. Hu, Facile synthesis of porous MnCo2O4.5 hierarchical architectures for high-rate supercapacitors. CrystEngComm 16, 2335–2339 (2014).  https://doi.org/10.1039/C3CE42581A CrossRefGoogle Scholar
  30. 30.
    T. Nguyen, M. Boudard, L. Rapenne, O. Chaix-Pluchery, M.J. Carmezim, M.F. Montemor, Structural evolution, magnetic properties and electrochemical response of MnCo2O4 nanosheet films. RSC Adv. 5, 27844–27852 (2015).  https://doi.org/10.1039/C5RA03047A CrossRefGoogle Scholar
  31. 31.
    R. Tholkappiyan, A.N. Naveen, S. Sumithra, K. Vishista, Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J. Mater. Sci. 50, 5833–5843 (2015).  https://doi.org/10.1007/s10853-015-9132-8 CrossRefGoogle Scholar
  32. 32.
    H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram. Int. 42, 2416–2424 (2016).  https://doi.org/10.1016/j.ceramint.2015.10.041 CrossRefGoogle Scholar
  33. 33.
    S.K. Shinde, J.V. Thombare, D.P. Dubal, V.J. Fulari, Electrochemical synthesis of photosensitive nano-nest like CdSe0.6Te0.4 thin films. Appl. Surf. Sci. 282, 561–565 (2013).  https://doi.org/10.1016/j.apsusc.2013.06.010 CrossRefGoogle Scholar
  34. 34.
    T. Zhao, H. Jiang, J. Ma, Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J. Power Sources 196, 860–864 (2011).  https://doi.org/10.1016/j.jpowsour.2010.06.042 CrossRefGoogle Scholar
  35. 35.
    J.R.S. Brownson, C. Lévy-Clément, Electrodeposition of α- and β-cobalt hydroxide thin films via dilute nitrate solution reduction. Phys. Stat. Solidi 245, 1785–1791 (2008).  https://doi.org/10.1002/pssb.200879534 CrossRefGoogle Scholar
  36. 36.
    P.K. Nayak, N. Munichandraiah, Simultaneous Electrodeposition of MnO2 and Mn(OH)2 for supercapacitor studies. Electrochem. Solid-State Lett. 12, A115 (2009).  https://doi.org/10.1149/1.3110010 CrossRefGoogle Scholar
  37. 37.
    A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes. Energy 64, 234–241 (2014).  https://doi.org/10.1016/j.energy.2013.10.016 CrossRefGoogle Scholar
  38. 38.
    W.-J. Zhou, D.-D. Zhao, M.-W. Xu, C.-L. Xu, H.-L. Li, Effects of the electrodeposition potential and temperature on the electrochemical capacitance behavior of ordered mesoporous cobalt hydroxide films. Electrochim. Acta 53, 7210–7219 (2008).  https://doi.org/10.1016/j.electacta.2008.05.007 CrossRefGoogle Scholar
  39. 39.
    S.B. Kulkarni, A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, S.S. Joshi, C.D. Lokhande, Potentiodynamic deposition of composition influenced Co1–xNix LDHs thin film electrode for redox supercapacitors. Int. J. Hydrog. Energy 38, 4046–4053 (2013).  https://doi.org/10.1016/j.ijhydene.2013.01.047 CrossRefGoogle Scholar
  40. 40.
    F.R. Bento, L.H. Mascaro, Analysis of the initial stages of electrocrystallization of Fe, Co and Fe-Co alloys in chloride solutions. J. Braz. Chem. Soc. (2002).  https://doi.org/10.1590/S0103-50532002000400015 Google Scholar
  41. 41.
    M.M. Moharam, E.M. Elsayed, J.C. Nino, R.M. Abou-Shahba, M.M. Rashad, Potentiostatic deposition of Cu2O films as p-type transparent conductors at room temperature. Thin Solid Films 616, 760–766 (2016).  https://doi.org/10.1016/j.tsf.2016.10.005 CrossRefGoogle Scholar
  42. 42.
    F.M.M. Borges, D.M.A. Melo, M.S.A. Câmara, A.E. Martinelli, J.M. Soares, J.H. de Araújo, F.A.O. Cabral, Magnetic behavior of nanocrystalline MnCo2O4 spinels. J. Magn. Magn. Mater. 302, 273–277 (2006).  https://doi.org/10.1016/j.jmmm.2005.09.017 CrossRefGoogle Scholar
  43. 43.
    E. Rios, P. Lara, D. Serafini, A. Restovic, J.L. Gautier, Synthesis and characterization of manganese-cobalt solid solutions prepared at low temperature. J. Chil. Chem. Soc. 55, 261–265 (2010).  https://doi.org/10.4067/S0717-97072010000200026 CrossRefGoogle Scholar
  44. 44.
    L. Li, Y.Q. Zhang, X.Y. Liu, S.J. Shi, X.Y. Zhao, H. Zhang, X. Ge, G.F. Cai, C.D. Gu, X.L. Wang, J.P. Tu, One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim. Acta 116, 467–474 (2014).  https://doi.org/10.1016/j.electacta.2013.11.081 CrossRefGoogle Scholar
  45. 45.
    X. Cao, W. Yan, C. Jin, J. Tian, K. Ke, R. Yang, Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochim. Acta 180, 788–794 (2015).  https://doi.org/10.1016/j.electacta.2015.08.160 CrossRefGoogle Scholar
  46. 46.
    P. Iamprasertkun, C. Tanggarnjanavalukul, A. Krittayavathananon, J. Khuntilo, N. Chanlek, P. Kidkhunthod, M. Sawangphruk, Insight into charge storage mechanisms of layered MnO2 nanosheets for supercapacitor electrodes: in situ electrochemical X-ray absorption spectroscopy. Electrochim. Acta 249, 26–32 (2017).  https://doi.org/10.1016/j.electacta.2017.08.002 CrossRefGoogle Scholar
  47. 47.
    L. Liu, W. Weng, J. Zhang, X. Cheng, N. Liu, J. Yang, X. Ding, Flexible supercapacitor with a record high areal specific capacitance based on a tuned porous fabric. J. Mater. Chem. A 4, 12981–12986 (2016).  https://doi.org/10.1039/C6TA04911G CrossRefGoogle Scholar
  48. 48.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011).  https://doi.org/10.1016/j.jpowsour.2011.02.049 CrossRefGoogle Scholar
  49. 49.
    Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 195, 1757–1760 (2010).  https://doi.org/10.1016/j.jpowsour.2009.09.048 CrossRefGoogle Scholar
  50. 50.
    Y. Zhai, H. Mao, P. Liu, X. Ren, L. Xu, Y. Qian, Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. J. Mater. Chem. A 3, 16142–16149 (2015).  https://doi.org/10.1039/C5TA03017J CrossRefGoogle Scholar
  51. 51.
    V. Venkatachalam, A. Alsalme, A. Alghamdi, R. Jayavel, High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J. Electroanal. Chem. 756, 94–100 (2015).  https://doi.org/10.1016/j.jelechem.2015.08.019 CrossRefGoogle Scholar
  52. 52.
    P.L. Meena, S. Pal, K. Sreenivas, R. Kumar, Structural and magnetic properties of MnCo2O4 spinel multiferroic. Adv. Sci. Lett. 21, 2760–2763 (2015).  https://doi.org/10.1166/asl.2015.6336 CrossRefGoogle Scholar
  53. 53.
    L. Zhang, Q. Tang, X. Chen, B. Fan, K. Xiao, S. Zhang, W. Deng, A. Hu, Self-assembled synthesis of diamond-like MnCo2O4 as anode active material for lithium-ion batteries with high cycling stability. J. Alloys Compd. 722, 387–393 (2017).  https://doi.org/10.1016/j.jallcom.2017.06.124 CrossRefGoogle Scholar
  54. 54.
    W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A.-P. Honkanen, S. Huotari, M. Yu, B. Geng, Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich Surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. Int. Ed. 56, 14977–14981 (2017).  https://doi.org/10.1002/anie.201708765 CrossRefGoogle Scholar
  55. 55.
    S. Nagamuthu, S. Vijayakumar, S.-H. Lee, K.-S. Ryu, Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode. Appl. Surf. Sci. 390, 202–208 (2016).  https://doi.org/10.1016/j.apsusc.2016.08.072 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. C. Maile
    • 1
  • S. K. Shinde
    • 2
  • R. T. Patil
    • 1
  • A. V. Fulari
    • 3
  • R. R. Koli
    • 1
  • D.-Y. Kim
    • 2
    Email author
  • D. S. Lee
    • 4
  • V. J. Fulari
    • 1
    Email author
  1. 1.Holography and Materials Research Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Department of Biological and Environmental Science, College of Life Science and BiotechnologyDongguk University-IlsanGoyang-siSouth Korea
  3. 3.Department of PhysicsOsmania UniversityHyderabadIndia
  4. 4.Department of Environmental EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations