A cataluminescence sensor based on α-MoO3 nanobelts with low working temperature for the detection of diethyl ether

  • YanZhong Zhen
  • HongMei Zhang
  • Feng Fu
  • YanTu Zhang


A novel cataluminescence (CTL) sensor was firstly fabricated utilizing α-MoO3 nanobelts as sensing material, which possesses lower working temperature of 120 °C for detection of diethyl ether gas. Under optimal conditions (200 mL min−1, 120 °C, 440 nm), as-made CTL sensor shows a wider detection range of 9.0–2000 ppm with a lower limit of detection of 7.5 ppm. The respond and recovery time were 16 s and within 2 s, respectively. Meanwhile, as-made CTL sensor exhibits an outstanding selectivity towards other 11 interferences. Besides, the highly stable signals were also obtained with the relative standard deviation of 2.60%. In general, α-MoO3 nanobelts as a sensing material have the potential application prospect in CTL sensor for detection of diethyl ether.



This work was supported by National Natural Science Foundation of China (21663030), The Project of Science & Technology Office of Shaanxi Province (Nos. 2016DDJC-19, 2015GY174, 2015SF291, 2013K11-08, 2013SZS20-P01), The Project of Science & Technology of Yan’an City (2016CGZH-12-01, 2015CHTD-04), Science and Technology Plan Project of Yan’an University (YD2015-13) and Innovation Training Project (YCX201734, 12288, 1553).


  1. 1.
    M. Breysse, B. Claudel, L. Faure, M. Guenin, R.J.J. Williams, T. Wolkenstein, J. Catal. 45, 137 (1976)CrossRefGoogle Scholar
  2. 2.
    J.Y. Liu, T.L. Han, B. Sun, L.T. Kong, Z. Jin, X.J. Huang, J.H. Liu, F.L. Meng, Catalysts 6, 210 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Dong, Y. Su, T. Lu, L. Zhang, L. Wu, Y. Lv, Sens. Actuators B 258, 349 (2018)CrossRefGoogle Scholar
  4. 4.
    F. Tang, C.A. Guo, J. Chen, X.R. Zhang, S.C. Zhang, X.H. Wang, Luminescence 30, 919 (2015)CrossRefGoogle Scholar
  5. 5.
    Y.F. Zhu, J.J. Shi, Z.Y. Zhang, C. Zhang, X.R. Zhang, Anal. Chem. 74, 120 (2002)CrossRefGoogle Scholar
  6. 6.
    C. Peng, K. Shao, Z. Long, J. Ouyang, N. Na, Anal. Bioanal. Chem. 408, 8843 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Wang, Z. Yuan, L. Zhang, Y. Lin, C. Lu, Analyst 142, 1415 (2017)CrossRefGoogle Scholar
  8. 8.
    J.Y. Han, F.F. Han, J. Ouyang, L. He, Y.T. Zhang, N. Na, Nanoscale 6, 3069 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Hu, K.L. Xu, Y.Z. Jia, Y. Lv, Y.B. Li, X.D. Hou, Anal. Chem. 80, 7964 (2008)CrossRefGoogle Scholar
  10. 10.
    M.J. Scotter, D.P.T. Roberts, J. Chromatogr. A. 1157, 386 (2007)CrossRefGoogle Scholar
  11. 11.
    H.B. Lin, J.S. Shih, Sens. Actuators B 92, 243 (2003)CrossRefGoogle Scholar
  12. 12.
    X.A. Cao, W.F. Wu, N. Chen, Y. Peng, Y.H. Liu, Sens. Actuators B 137, 83 (2009)CrossRefGoogle Scholar
  13. 13.
    G. Shi, B. Sun, Z. Jin, J. Liu, M. Li, Sens. Actuators B 171–172, 699 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Zhang, N. He, W. Shi, C. Lu, Anal. Bioanal. Chem. 408, 8787 (2016)CrossRefGoogle Scholar
  15. 15.
    L.J. Zhang, S. Wang, Z.Q. Yuan, C. Lu, Sens. Actuators B 230, 242 (2016)CrossRefGoogle Scholar
  16. 16.
    L.J. Zhang, S. Wang, C. Lu, Anal. Chem. 87, 7313 (2015)CrossRefGoogle Scholar
  17. 17.
    I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-Zadeh, Adv. Mater. 29, 1701619 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Feng, Z.Y. Wu, J.S. Liu, K.J. Zhu, Z.Q. Li, X. Jin, Y.D. Hou, Q.X. Xi, M.Q. Cong, P.C. Liu, Q. Gu, Appl. Catal. B 206, 242 (2017)CrossRefGoogle Scholar
  19. 19.
    Q.Y. Ouyang, L. Li, Q.S. Wang, Y. Zhang, T.S. Wang, F.N. Meng, Y.J. Chen, P. Gao, Sens. Actuators B 169, 17 (2012)CrossRefGoogle Scholar
  20. 20.
    T.S. Wang, Q.S. Wang, C.L. Zhu, Q.Y. Ouyang, L.H. Qi, C.Y. Li, G. Xiao, P. Gao, Y.J. Chen, Sens. Actuators B 171–172, 2568 (2012)Google Scholar
  21. 21.
    A.A. Mane, A.V. Moholkar, Appl. Surf. Sci. 405, 427 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Yang, Y.L. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, G.S. Zakharova, Sens. Actuators B 226, 478 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Yang, Y.L. Liu, W. Chen, T. Jin, T.Q. Yang, M.C. Cao, S.S. Liu, J. Zhou, G.S. Zakharova, W. Chen, Appl. Surf. Sci. 393, 377 (2017)CrossRefGoogle Scholar
  24. 24.
    H.Y. Qin, J. Xie, H. Xu, Y.Z. Li, Y.L. Cao, Mater. Res. Bull. 93, 256 (2017)CrossRefGoogle Scholar
  25. 25.
    D. Jiang, W. Wei, F. Li, Y. Li, C. Liu, D. Sun, C. Feng, S. Ruan, RSC Adv. 5, 39442, (2015)CrossRefGoogle Scholar
  26. 26.
    A.R. Head, R. Tsyshevsky, L. Trotochaud, Y. Yu, L. Kyhl, O. Karslıoǧlu, M.M. Kuklja, H. Bluhm, J. Phys. Chem. C 120, 29077 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi, Y. Qi, Mater. Lett. 157, 53 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Cheng, M.W. Shao, X.H. Wang, H.B. Hu, Chem. Eur. J. 15, 2310 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Liu, Y. Zhang, Y. Zhen, Y. Ma, W. Zuo, Luminescence 29, 1183 (2014)CrossRefGoogle Scholar
  30. 30.
    V.K. Tomer, S. Duhan, J. Mater. Chem. A. 4, 1033 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Chemical Reaction EngineeringYanan UniversityYan’anChina
  2. 2.School of Petroleum Engineering and Environmental EngineeringYanan UniversityYan’anChina

Personalised recommendations