Advertisement

MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant

  • Unni Krishnan
  • Manjot Kaur
  • Kulwinder Singh
  • Gurpreet Kaur
  • Paviter Singh
  • Manish Kumar
  • Akshay KumarEmail author
Article
  • 11 Downloads

Abstract

MoS2/Ag nanocomposite has been successfully synthesized by hydrothermal–wet chemical method. MoS2/Ag nanocomposites were characterized by powder X-ray diffraction (XRD), transmission electron microscopy and selected area electron diffraction. XRD patterns confirmed the presence of MoS2 and Ag phases in the synthesized composite. Photocatalytic ability of the nanocomposite evaluated against methylene blue (MB) and Novacron Red Huntsman (NRH) dye under normal light source for 80 min. Catalytic loading (1 g/L) lead to maximum degradation rate of 77.9% and 77.5% for MB and NRH dye respectively. Nanocomposites exhibited sensing ability against nitrobenzene. The sensing capability was evaluated using cyclic voltammetry electrochemical technique. Mechanisms of the photocatalytic activity and electrochemical sensing are also explained herewith.

Notes

Acknowledgements

This study was funded by the SERB, Department of Science and Technology Project No. EMR/2016/002815.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    R. Kant, Nat. Sci. 04, 22 (2012)Google Scholar
  2. 2.
    A. Hasanbeigi, L. Price, J. Clean. Prod. 95, 30 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Granbohm, K. Kulmala, A. Iyer, Y. Ge, S.P. Hannula, Water Air Soil Pollut. 228, 127 (2017)CrossRefGoogle Scholar
  4. 4.
    Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28, 1917 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Kaiming, Y. Shengrong, L. Xiaohong, W. Jinqing, Adv. Mater. Interfaces 5, 1701682 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Chhowalla, G. Amaratunga, Nature 407, 164 (2000)CrossRefGoogle Scholar
  7. 7.
    P. Simo, C. Guillaume, S. Aurélien, R. Mathieu, F. Tobin, Adv. Eng. Mater. 19, 1700423 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Wang, X. Zhou, X. Xu, J. Hu, J. Pan, J. Phys. D 50, 95102 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Zhou, X. Wang, S. Raju, Z. Lin, D. Villaroman, B. Huang, L.-W. Helen, M. Chan, Chan, Y. Chai, Nanoscale (2015).  https://doi.org/10.1039/C5NR01072A Google Scholar
  10. 10.
    W. Wu, D. De, S.-C.C. Chang, Y. Wang, H. Peng, J. Bao, S.-S.S. Pei, Appl. Phys. Lett. 102, 142106 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Zhang, H. Pu, Y. Yang, IOP Conf. Ser. Mater. Sci. Eng. 284, 12007 (2018)CrossRefGoogle Scholar
  12. 12.
    T. Corrales-Sánchez, J. Ampurdanés, A. Urakawa, Int. J. Hydrog. Energy 39, 20837 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Nano Lett. 12, 4013 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Sharma, C. Madhu, Adv. Res 2, 62 (2015)Google Scholar
  15. 15.
    Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne, J. Am. Chem. Soc. 118, 5362 (1996)CrossRefGoogle Scholar
  16. 16.
    K. Mao, Z. Wu, Y. Chen, X. Zhou, A. Shen, J. Hu, Talanta 132, 658 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Sahatiya, S.S. Jones, S. Badhulika, Flex. Print. Electron. 3, 15002 (2018)CrossRefGoogle Scholar
  18. 18.
    R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei, J. Lou, P.M. Ajayan, G. Gupta, A.D. Mohite, M. Chhowalla, APL Mater. (2014).  https://doi.org/10.1063/1.4896077 Google Scholar
  19. 19.
    Y. Zhang, W. Zeng, Y. Li, J. Alloys Compd. 749, 355 (2018)CrossRefGoogle Scholar
  20. 20.
    X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4, 6816 (2016)CrossRefGoogle Scholar
  21. 21.
    S.V. Prabhakar Vattikuti, C. Byon, C. Venkata Reddy, B. Venkatesh, J. Shim, J. Mater. Sci. 50, 5024 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, C. Wang, ACS Nano 5, 1276 (2011)CrossRefGoogle Scholar
  23. 23.
    T.A.J. Loh, D.H.C. Chua, ACS Appl. Mater. Interfaces 6, 15966 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Ambrosi, X. Chia, Z. Sofer, M. Pumera, Electrochem. Commun. 54, 36 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Amini, A.R. S.A, M. Faghihi, S. Fattahpour, Ultrason. Sonochem. 39, 188 (2017)CrossRefGoogle Scholar
  26. 26.
    S.A. Ansari, H. Fouad, S.G. Ansari, M.P. Sk, M.H. Cho, J. Colloid Interface Sci. 504, 276 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Li, X. Yin, W. Wu, Ind. Eng. Chem. Res. 57, 2838 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Ali, G.U. Siddiqui, K.H. Choi, Y. Jang, K. Lee, J. Lumin. 169, 342 (2016)CrossRefGoogle Scholar
  29. 29.
    S.L. Zhang, H.H. Choi, H.Y. Yue, W.C. Yang, Curr. Appl. Phys. 14, 264 (2014)CrossRefGoogle Scholar
  30. 30.
    N. Imanishi, K. Kanamura, Z. Takehara, J. Electrochem. Soc. 139, 2082 (1992)CrossRefGoogle Scholar
  31. 31.
    a Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne, J. Am. Chem. Soc. 122, 11108 (2000)CrossRefGoogle Scholar
  32. 32.
    W.K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, J. Am. Chem. Soc. 122, 10155 (2000)CrossRefGoogle Scholar
  33. 33.
    A. Enyashin, S. Gemming, G. Seifert, Eur. Phys. J. Spec. Top. 149, 103 (2007)CrossRefGoogle Scholar
  34. 34.
    F. Wang, P. Stepanov, M. Gray, C.N. Lau, Nanotechnology 26, 105709 (2015)CrossRefGoogle Scholar
  35. 35.
    Y.-H.H. Tan, K. Yu, J.-Z.Z. Li, H. Fu, Z.-Q.Q. Zhu, J. Appl. Phys. 116, 64305 (2014)CrossRefGoogle Scholar
  36. 36.
    S.K. Srivastava, D. Palit, Solid State Ionics 176, 513 (2005)CrossRefGoogle Scholar
  37. 37.
    H. Li, K. Yu, X. Lei, B. Guo, H. Fu, Z. Zhu, J. Phys. Chem. C 119, 22681 (2015)CrossRefGoogle Scholar
  38. 38.
    W.C. Peng, X. Wang, X.Y. Li, Nanoscale 6, 8311 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. Liu, H. Yu, X. Quan, S. Chen, Int. J. Photoenergy 2013, 1 (2013)Google Scholar
  40. 40.
    G. Chen, D. Li, F. Li, Y. Fan, H. Zhao, Y. Luo, R. Yu, Q. Meng, Appl. Catal. A 443–444, 138 (2012)CrossRefGoogle Scholar
  41. 41.
    K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130, 1676 (2008)CrossRefGoogle Scholar
  42. 42.
    P. Sangpour, F. Hashemi, A.Z. Moshfegh, J. Phys. Chem. C 114, 13955 (2010)CrossRefGoogle Scholar
  43. 43.
    A. Zosel, K. Rychter, J.B. Leikin, Am. J. Ther. 14, 585–587 (2007)CrossRefGoogle Scholar
  44. 44.
    L. Zhao, J. Ma, Z. Sun, Appl. Catal. B 79, 244 (2008)CrossRefGoogle Scholar
  45. 45.
    C. Karuppiah, K. Muthupandi, S.-M. Chen, M.A. Ali, S. Palanisamy, A. Rajan, P. Prakash, F.M.A. Al-Hemaid, B.-S. Lou, RSC Adv. 5, 31139 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Agrawal, P.G. Tratnyek, Environ. Sci. Technol. 30, 153 (1996)CrossRefGoogle Scholar
  47. 47.
    Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Salinas, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, A.M. Costero, M. Parra, S. Gil, Chem. Soc. Rev. 41, 1261 (2012)CrossRefGoogle Scholar
  49. 49.
    S.-P. Wang, H.-J. Chen, J. Chromatogr. A 979, 439 (2002)CrossRefGoogle Scholar
  50. 50.
    Y. Mu, R.A. Rozendal, K. Rabaey, J. Keller, Environ. Sci. Technol. 43, 8690 (2009)CrossRefGoogle Scholar
  51. 51.
    H. Ebrahimzadeh, Y. Yamini, F. Kamarei, Talanta 79, 1472 (2009)CrossRefGoogle Scholar
  52. 52.
    J. Cheah, W.S. Chiu, P.S. Khiew, H. Nakajima, T. Saisopa, P. Songsiriritthigul, S. Radiman, M.A.A. Hamid, Catal. Sci. Technol. 5, 4133 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Kumar, B. Singh, P. Yadav, V. Bhatt, M. Kumar, K. Singh, A.C. Abhyankar, A. Kumar, J.-H. Yun, Ceram. Int. 43, 3562 (2017)CrossRefGoogle Scholar
  54. 54.
    P. Singh, G. Kaur, K. Singh, B. Singh, M. Kaur, M. Kaur, U. Krishnan, M. Kumar, R. Bala, A. Kumar, Appl. Nanosci. 8, 1 (2018)CrossRefGoogle Scholar
  55. 55.
    B. Li, H. Cao, J. Mater. Chem. 21, 3346 (2011)CrossRefGoogle Scholar
  56. 56.
    O. Sacco, M. Stoller, V. Vaiano, P. Ciambelli, A. Chianese, D. Sannino, Int. J. Photoenergy (2012).  https://doi.org/10.1155/2012/626759 Google Scholar
  57. 57.
    J. Xu, J. Gao, W. Wang, C. Wang, L. Wang, Int. J. Hydrog. Energy 43, 1375 (2018)CrossRefGoogle Scholar
  58. 58.
    L. Baia, M. Baia, W. Kiefer, J. Popp, S. Simon, Chem. Phys. 327, 63 (2006)CrossRefGoogle Scholar
  59. 59.
    G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, A. Kumar, ChemistrySelect 2, 2166 (2017)CrossRefGoogle Scholar
  60. 60.
    G. Kaur, B. Singh, P. Singh, M. Kaur, K.K. Buttar, K. Singh, A. Thakur, R. Bala, M. Kumar, A. Kumar, RSC Adv. 6, 99120 (2016)CrossRefGoogle Scholar
  61. 61.
    A. Curulli, F. Valentini, G. Padeletti, A. Cusmà, G.M. Ingo, S. Kaciulis, D. Caschera, G. Palleschi, Sens. Actuators B 111–112, 526 (2005)CrossRefGoogle Scholar
  62. 62.
    N. Sabari Arul, D. Mangalaraj, P. Nandha Kumar, E. Kim, P. Devi, J.I. Han, Ceram. Int. 41, 5568 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Functional Materials Laboratory, Department of NanotechnologySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Central Scientific Instrument Organization (CSIR-CSIO)ChandigarhIndia

Personalised recommendations