Fabrication and characterization of polyoxometalate/2D graphene-based flexible supercapacitors for wearable electronic pulse-beat application

  • Yongwu Shi
  • Xinxing WangEmail author
  • Jiaolian Luo
  • Quan XieEmail author


Nowadays, low-dimensional graphene nanomaterials, such as two dimensional (2D) graphene nanosheets (2D GNs), have been widely reported and suggested for, e.g., catalysts, solar cells, and photovoltaic devices, but previous works still do not pay much attention to the flexible electronics sensor that base on the 2D graphene nanomaterials. Here we report on using a highly conductive polyoxometalate (POM) and 2D GNs foam to fabricate the 2D GNs-based supercapacitors capable of detecting the pulse beat rate. Characterization techniques, such as the X-ray diffraction, energy dispersive X-ray spectra, transmission electron microscopy, galvanostatic charge–discharge and cyclic voltammetry, are used to illustrate the structural and electrochemical properties. Our results reveal that the POM can disperse into 2D GNs to form the POM/2D GNs nanocomposites. In the meanwhile, we find the specific cycling stability of POM/2D GNs can be significantly enhanced as compared to bulk 2D GNs foam. Moreover, we design a flexible pulse sensor device, which is based on depositing the POM/2D GNs foam on a conductive adhesive substrate. Our results reveal that the POM/2D GNs-based sensor is sensitive to the external pulse beat, which can linearly detect a bending area within the range of 0.483 mm2. This work indicates that the POM/2D GNs can act as a type of sensor material to monitor the human body health.



The work is supported by the National Natural Science Foundation of China (Grant No. 61264004), the Special Fund for the Twelfth Five-Year Major Sci-Tech Program of Education Department in Guizhou Province of China (Grant No. [2012] 003) and High-level Creative Talent Training Program in Guizhou Province of China.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRefGoogle Scholar
  4. 4.
    D.H. Deng, K.S. Novoselov, Q. Fu, N.F. Zheng, Z.Q. Tian, X.H. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechol. 11, 218–230 (2016)CrossRefGoogle Scholar
  5. 5.
    Z.S. Wuab, G.M. Zhou, L.C. Yin, W.C. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2, 107–131 (2012)Google Scholar
  6. 6.
    N.L. Yang, J. Zhai, D. Wang, Y.S. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)CrossRefGoogle Scholar
  7. 7.
    H.L. Wang, Y. Yang, Y.Y. Liang, J.T. Robinson, Y.G. Li, A. Jackson, Y. Cui, H.J. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)CrossRefGoogle Scholar
  8. 8.
    T.H. Han, Y.B. Lee, M.R. Choi, S.H. Woo, S.H. Bae, B.H. Hong, J.H. Ahn, T.W. Lee, Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 10, 105–110 (2012)CrossRefGoogle Scholar
  9. 9.
    J.P. Wang, X. Wang, D.W. Gu, C.H. Liu, L.J. Shen, Synthesis and characterization of polyoxometalate/graphene oxide nanocomposites for supercapacitor. Ceram. Int. 44, 17492–17498 (2018)CrossRefGoogle Scholar
  10. 10.
    T.P. Xie, L. Zhang, Y. Wang, Y.J. Wang, X.X. Wang, Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram. Int. 45, 2516–2520 (2019)CrossRefGoogle Scholar
  11. 11.
    S.J. Zhu, J.H. Zhang, C.Y. Qiao, S.J. Tang, Y.F. Li, W.J. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H.N. Gao, H.T. Wei, H. Zhang, H.C. Sun, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011)CrossRefGoogle Scholar
  12. 12.
    D.J. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)CrossRefGoogle Scholar
  13. 13.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  14. 14.
    V. Perebeinos, J. Tersoff, P. Avouris, Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  16. 16.
    X. Liang, G.H. Long, C.W. Fu, M.J. Pang, Y.L. Xi, J.Z. Li, W. Han, G.D. Wei, Y. Ji, High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 345, 186–195 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Ren, R.P. Ren, Y.K. Lv, Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem. Eng. J. 349, 111–118 (2018)CrossRefGoogle Scholar
  18. 18.
    Z.X. Liu, H.F. Li, M.S. Zhu, Y. Huang, Z.J. Tang, Z.X. Pei, Z.F. Wang, Z.C. Shi, J. Liu, Y. Huang, Ch.Y. Zhi, Towards wearable electronic devices: a quasi-solid-state aqueous lithiumion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018)CrossRefGoogle Scholar
  19. 19.
    Y.M. He, W.J. Chen, X.D. Li, Z.X. Zhang, J.C. Fu, C.H. Zhao, E.Q. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174–182 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Gao, C. Bumgardner, N.N. Song, Y.Y. Zhang, J.J. Li, X.D. Li, Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat. Commun. 7, 11586 (2016)CrossRefGoogle Scholar
  21. 21.
    Y.N. Meng, Y. Zhao, C.G. Hu, H.H. Cheng, Y. Hu, Z.P. Zhang, G.Q. Shi, L.T. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013)CrossRefGoogle Scholar
  22. 22.
    C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)CrossRefGoogle Scholar
  23. 23.
    Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, B. Cui, C.S. Zhao, H. Lin, J.B. Li, Co-Ni layered double hydroxides for water oxidation in neutral electrolyte. Phys. Chem. Chem. Phys. 15, 7363–7369 (2013)CrossRefGoogle Scholar
  25. 25.
    J.Q. Liu, M.B. Zheng, X.Q. Shi, H.B. Zeng, H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 26, 919–930 (2016)CrossRefGoogle Scholar
  26. 26.
    J.J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X.F. Niu, Y.S. Chen, Q.B. Pei, Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014)CrossRefGoogle Scholar
  27. 27.
    L.B. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010)CrossRefGoogle Scholar
  28. 28.
    S.L.P. Tang, Recent developments in flexible wearable electronics for monitoring applications. Trans. Inst. Meas. Control 29, 283–300 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Chen, Q.B. Pei, Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117, 11239–11268 (2017)CrossRefGoogle Scholar
  30. 30.
    Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)CrossRefGoogle Scholar
  31. 31.
    Y.W. Ma, L.Y. Sun, W. Huang, L.G. Zhang, J. Zhao, Q.L. Fan, W. Huang, Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 115, 24592–24597 (2011)CrossRefGoogle Scholar
  32. 32.
    E. Ran, S. Gregory, G. Arnd, P. Alexander, A. Doron, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641–5644 (2011)CrossRefGoogle Scholar
  33. 33.
    P. Hao, Z.H. Zhao, Y.H. Leng, J. Tian, Y.H. Sang, R.I. Boughton, C.P. Wong, H. Liu, B. Yang, Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 2809–2815 (2013)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, L. Wang, T.T. Yang, X. Li, X.B. Zang, M. Zhu, K.L. Wang, D.H. Wu, H.W. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2 4, 4666–4670 (2014)CrossRefGoogle Scholar
  36. 36.
    H.B. Yao, J. Ge, C.F. Wang, X.W.W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane Sponge based on fractured microstructure design. Adv. Mater. 25, 6692–6698 (2013)CrossRefGoogle Scholar
  37. 37.
    B.H. Wang, W. Huang, L.F. Chi, M.A. Hashimi, T.J. Marks, A. Facchetti, High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018)CrossRefGoogle Scholar
  38. 38.
    X. Zhang, Z.C. Lai, Z.D. Liu, C.L. Tan, Y. Huang, B. Li, M.T. Zhao, L.H. Xie, W. Huang, H. Zhang, A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem. 127, 5515–5518 (2015)CrossRefGoogle Scholar
  39. 39.
    N.I. Kovtyukhova, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999)CrossRefGoogle Scholar
  40. 40.
    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  41. 41.
    S. Bykkam, V. Rao, C. Chakra, Synthesis and characterization of graphene oxide and its antimicrobial activity against klebseilla and staphylococus. Int. J. Adv. Biotechnol. Res. 4, 142–146 (2013)Google Scholar
  42. 42.
    K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)CrossRefGoogle Scholar
  43. 43.
    G.X. Wang, X.P. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 53, 1359–1364 (2009)CrossRefGoogle Scholar
  44. 44.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653–2659 (2009)CrossRefGoogle Scholar
  45. 45.
    P.D. Deepak, S.G. Jullieth, T. Dino, E. Ediardo, G.R. Pedro, A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. J. Mater. Chem. A 3, 23483–23492 (2015)CrossRefGoogle Scholar
  46. 46.
    S.G. Jullieth, R. Vansesa, G.R. Pedro, Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors. Phys. Chem. Chem. Phys. 16, 20411–20414 (2014)CrossRefGoogle Scholar
  47. 47.
    T. Akter, K. Hu, K. Lian, Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors. Electrochim. Acta 56, 4966–4971 (2011)CrossRefGoogle Scholar
  48. 48.
    V. Ruiz, S.G. Jullieth, G.R. Pedro, Hybrid electrodes based on polyoxometalate–carbon materials for electrochemical supercapacitors. Electrochem. Commun. 24, 35–38 (2012)CrossRefGoogle Scholar
  49. 49.
    T.Y. Liu, L.R. Finn, M.H. Yu, H.Y. Wang, T. Zhai, X.H. Lu, Y.X. Tong, Y.X. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 2522–2527 (2014)CrossRefGoogle Scholar
  50. 50.
    T. Tamura, Y. Maeda, M. Sekine, M. Yoshida, Wearable photoplethysmographic sensors-past and present. Electronics 3, 282–302 (2014)CrossRefGoogle Scholar
  51. 51.
    N. Lena, J. Anders, K. Sigga, Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J. Clin. Monit. Comput. 16, 309–315 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MedicineGuizhou UniversityGuiyangPeople’s Republic of China
  2. 2.Department of EquipmentGuiZhou Provincial People’s HospitalGuiyangPeople’s Republic of China
  3. 3.School of Computer Science and EngineeringNanyang Technological University (NTU)SingaporeSingapore
  4. 4.Special and Key Laboratory of Guizhou Provincial Higher Education for Green Energy-Saving MaterialsGuiyangPeople’s Republic of China
  5. 5.Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information EngineeringGuizhou UniversityGuiyangPeople’s Republic of China

Personalised recommendations