Advertisement

Microwave synthesis of MoO3-reduced graphene oxide nanocomposite for high performance asymmetric supercapacitors

  • B. Joji Reddy
  • P. VickramanEmail author
  • A. Simon Justin
Article
  • 8 Downloads

Abstract

MoO3-reduced graphene oxide nanocomposite is synthesized in a facile, time-saving and environmental friendly microwave assisted synthesis route. The as-prepared samples, MoO3 and MoO3-reduced graphene oxide are characterized by XRD, Raman, XPS, SEM, and TEM. The characteristic studies have confirmed the formation of MoO3 and its composite matrix with reduced graphene oxide. The electrochemical studies are carried out in three-electrode set up, and in two-electrode configuration to find the suitability of the as-prepared material for asymmetric supercapacitor applications. The galvanostatic charge/discharge profile of rGO//MoO3–rGO exhibits an excellent electrochemical activity with a specific capacitance of 133.68 F g−1 at 3 A g−1 with energy density and power density of 36.2 Wh Kg−1 and 535.6 W Kg−1 respectively. The asymmetric supercapacitor device attains 85% of cyclic stability even after 4000 charge/discharge cycles.

References

  1. 1.
    J. Yan, Q. Wang, T. Wei, Z.J. Fan, Adv. Energy Mater. 4, 1300816–1300823 (2014).  https://doi.org/10.1002/aenm.201300816 CrossRefGoogle Scholar
  2. 2.
    L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983–5992 (2010)  https://doi.org/10.1039/C000417K CrossRefGoogle Scholar
  3. 3.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012).  https://doi.org/10.1039/C1CS15060J CrossRefGoogle Scholar
  4. 4.
    S.K. Meher, P. Justin, G.R. Rao, ACS Appl. Mater. Interfaces 3, 2063–2073 (2011).  https://doi.org/10.1021/am200294k CrossRefGoogle Scholar
  5. 5.
    Y.-B. He, G.-R. Li, Z.-L. Wang, Ch-Y. Su, Y.-X. Tong, Energy Environ. Sci. 4, 1288–1292 (2011).  https://doi.org/10.1039/C0EE00669F CrossRefGoogle Scholar
  6. 6.
    K. Liang, X. Tang, W. Hu, J. Mater. Chem. 22, 11062–11067 (2012).  https://doi.org/10.1039/C2JM31526B CrossRefGoogle Scholar
  7. 7.
    R. Tummala, R.K. Guduru, P.S. Mohanthy, J. Power Sources 201, 44–51 (2012).  https://doi.org/10.1016/j.jpowsour.2012.02.071 CrossRefGoogle Scholar
  8. 8.
    Y.F. Liu, Z.H. Jiang, G.H. Yuan, Adv. Mater. Res. 608–609, 1074–1077 (2013).  https://doi.org/10.4028/www.scientific.net/AMR.608-609.1074 Google Scholar
  9. 9.
    M. Sarfraz, M.F.A. Aboud, I. Shakir, J. Alloys Compd. 650, 123–126 (2015).  https://doi.org/10.1016/j.jallcom.2015.07.274 CrossRefGoogle Scholar
  10. 10.
    X. Yang, H. Ding, D. Zhang, X. Yan, Ch Lu, J. Qin, R. Zhang, H. Tang, H. Song, Cryst. Res. Technol. 46, 1195–1201 (2011).  https://doi.org/10.1002/crat.201100302 CrossRefGoogle Scholar
  11. 11.
    Y. Huang, J. Liang, Y. Chen, Small 8, 1805–1834 (2012).  https://doi.org/10.1002/smll.201102635 CrossRefGoogle Scholar
  12. 12.
    A. Gonzalez, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sust. Energy Rev. 58, 1189–1206 (2016).  https://doi.org/10.1016/j.rser.2015.12.249 CrossRefGoogle Scholar
  13. 13.
    B. Anasori, M. Beidaghi, Y. Gogotsi, Mater. Today 17, 253–254 (2014).  https://doi.org/10.1016/j.mattod.2014.04.043 CrossRefGoogle Scholar
  14. 14.
    Q.W. Tang, Z.Q. Shan, L. Wang, X. Qin, Electrochim. Acta 79, 148–153 (2012).  https://doi.org/10.1016/j.electacta.2012.06.093 CrossRefGoogle Scholar
  15. 15.
    A. Bhaskar, M. Deepa, T.N. Rao, U.V. Varadaraju, J. Power Sources 216, 169–178 (2012).  https://doi.org/10.1016/j.jpowsour.2012.05.050 CrossRefGoogle Scholar
  16. 16.
    L. Noerochim, J. Wang, D. Wexler, Z. Chao, H. Liu, J. Power Sources 228, 198–205 (2013).  https://doi.org/10.1016/j.jpowsour.2012.11.113 CrossRefGoogle Scholar
  17. 17.
    Y. Xu, R. Yi, B. Yuan, X.F. Wu, M. Dunwell, Q.L. Lin, L. Fei, S.G. Deng, P. Andersen, D.H. Wang, H.M. Luo, J. Phys. Chem. Lett. 3309–3314 (2012)  https://doi.org/10.1021/jz201619r
  18. 18.
    K.H. Seng, G.D. Du, L. Li, Z.X. Chen, H.K. Liu, Z.P. Guo, J. Mater. Chem. 22, 16072–16077 (2012).  https://doi.org/10.1039/C2JM32822D CrossRefGoogle Scholar
  19. 19.
    X.W. Lou, H.C. Zeng, Chem. Mater. 14, 4781–4789 (2002).  https://doi.org/10.1021/cm0206237 CrossRefGoogle Scholar
  20. 20.
    T. Ivanova, M. Surtchev, K. Gesheva, Mater. Lett. 53, 250–257 (2002).  https://doi.org/10.1016/S0167-577X(01)00486-4 CrossRefGoogle Scholar
  21. 21.
    Z.Q. Yuan, L.L. Si, D.H. Wei, L. Hu, Y.C. Zhu, X.N. Li, Y.T. Qian, J. Phys. Chem. C 118, 5091–5101 (2014).  https://doi.org/10.1021/jp410550v CrossRefGoogle Scholar
  22. 22.
    I. Shakir, M. Shahid, U. Ali Rana, M. Farooq Warsi, RSC Adv. 4, 8741–8745 (2014).  https://doi.org/10.1039/C3RA44837A CrossRefGoogle Scholar
  23. 23.
    M.Y. Ho, P.S. Khiew, D. Isa, W.S. Chiu, C.H. Chia, J. Mater. Sci. 28, 6907–6918 (2017).  https://doi.org/10.1007/s10854-017-6391-y Google Scholar
  24. 24.
    X. Feng, J. Zhou, J. Song, H. Li, Z. Huang, S. Chen, Y. Ma, L. Wang, X. Yan, New J. Chem. 39, 8780–8786 (2015).  https://doi.org/10.1039/C5NJ01722J CrossRefGoogle Scholar
  25. 25.
    A. Pathak, A. Sadashiv Gangan, S. Ratha, B. Chakraborty, Ch.S. Rout, J. Phy. Chem. C 121, 18992–19001 (2017).  https://doi.org/10.1021/acs.jpcc.7b04478 CrossRefGoogle Scholar
  26. 26.
    L. Khandare, J. Dattatray, Appl. Surf. Sci. 418, 2–8 (2017).  https://doi.org/10.1016/j.apsusc.2016.11.199 CrossRefGoogle Scholar
  27. 27.
    L.-Y. Meng, B. Wang, M.-G. Ma, K.-L. Lin, Mater. Today Chem. 1–2, 63–83 (2016).  https://doi.org/10.1016/j.mtchem.2016.11.003 CrossRefGoogle Scholar
  28. 28.
    Z. Jubri, M.Z. Hussein, A. Yahaya, Z. Zainal, Nanosci. Methods 1, 152–163 (2012).  https://doi.org/10.1080/17458080.2011.630036 CrossRefGoogle Scholar
  29. 29.
    B. Shouli, C. Chen, R. Luo, A. Chen, D. Li, Sens. Actuators B 216, 113–120 (2015).  https://doi.org/10.1016/j.snb.2015.04.036 CrossRefGoogle Scholar
  30. 30.
    M.T.H. Aunkor, I.M. Mahbubul, R. Saidur, H.S.C. Metselaar, RSC Adv. 6, 27807–27828 (2016).  https://doi.org/10.1039/C6RA03189G CrossRefGoogle Scholar
  31. 31.
    J. Zhou, N. Lin, L. Wang, K. Zhang, Y. Zhu, Y. Qian, J. Mater. Chem. A 3, 7463–7468 (2015).  https://doi.org/10.1039/C5TA00516G CrossRefGoogle Scholar
  32. 32.
    B. Paulchamy, G. Arthi, B.D. Lignesh, J. Nanomed. Nantotechnol. 6, 1 (2015).  https://doi.org/10.4172/2157-7439.1000253 Google Scholar
  33. 33.
    M. Saranya, R. Ramachandran, F. Wang, J. Sci. 1, 454–460 (2016).  https://doi.org/10.1016/j.jsamd.2016.10.001 Google Scholar
  34. 34.
    M. Dieterle, G. Weinberg, G. Mestl, Phys. Chem. Chem. Phys. 4, 812–821 (2002).  https://doi.org/10.1039/B107012F CrossRefGoogle Scholar
  35. 35.
    M. Mehrali, E. Moghaddam, S.F.S. Shirazi, S. Baradaran, M. Mehrali, S.T. Latibari et al., ACS Appl. Mater. Interfaces 6, 3947–3962 (2014).  https://doi.org/10.1021/am500845x CrossRefGoogle Scholar
  36. 36.
    A.N. Naveen, S. Selladurai, Electrochim. Acta 173, 290–301 (2015).  https://doi.org/10.1016/j.electacta.2015.05.072 CrossRefGoogle Scholar
  37. 37.
    J. Zhang, H. Yang, G. Sehn, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112–1114 (2010).  https://doi.org/10.1039/B917705A CrossRefGoogle Scholar
  38. 38.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36–41 (2008).  https://doi.org/10.1021/nl071822y CrossRefGoogle Scholar
  39. 39.
    C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007).  https://doi.org/10.1063/1.2818692 CrossRefGoogle Scholar
  40. 40.
    L. Zhou, J. Zhu, M.H. Yu, X.D. Huang, Z. Li, Y.H. Wang, C.Z. Yu. J. Phys. Chem. C 114, 20947 (2010).  https://doi.org/10.1021/jp104644e CrossRefGoogle Scholar
  41. 41.
    F. Werfel, E. Minni. J. Phys. C 16, 6091 (1983).  https://doi.org/10.1088/0022-3719/16/31/022 CrossRefGoogle Scholar
  42. 42.
    B. Mendoza Sanchez, T. Brousse, C. Ramirez Castro, V. Nicolosi, P.S. Grant, Electrochim. Acta 91, 253–260 (2013).  https://doi.org/10.1016/j.electacta.2012.11.127 CrossRefGoogle Scholar
  43. 43.
    H. Song, X. Li, Y. Zhang, H. Wang, H. Li, J. Huang, Ceram. Int. 40, 1251–1255 (2014).  https://doi.org/10.1016/j.ceramint.2013.06.044 CrossRefGoogle Scholar
  44. 44.
    S. Chen, J.W. Zhu, Z.D. Wu, Q.F. Han, X. Wang, ACS Nano 4, 2822–2830 (2010).  https://doi.org/10.1021/nn901311t CrossRefGoogle Scholar
  45. 45.
    Y.Q. Zou, Y. Wang, Nanoscale 3, 2615–2620 (2011).  https://doi.org/10.1039/C1NR10070J CrossRefGoogle Scholar
  46. 46.
    Q. Ke, J. Wang, J. Materiomics, J. Materiomics 2, 37–54 (2016)  https://doi.org/10.1016/j.jmat.2016.01.001 CrossRefGoogle Scholar
  47. 47.
    M.D. Sroller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498–3502 (2008).  https://doi.org/10.1021/nl802558y CrossRefGoogle Scholar
  48. 48.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, ACS Nano 3, 2653–2659 (2009).  https://doi.org/10.1021/nn900227d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. Joji Reddy
    • 1
  • P. Vickraman
    • 1
    Email author
  • A. Simon Justin
    • 1
  1. 1.Solid State Ionics Lab, Department of PhysicsThe Gandhigram Rural Institute-DUGandhigramIndia

Personalised recommendations