Advertisement

Nickel tungstate nanoparticles: synthesis, characterization and electrochemical sensing of mercury(II) ions

  • Hanumantharayappa Eranjaneya
  • Prashanth Shivappa Adarakatti
  • Ashoka Siddaramanna
  • Chandrappa Gujjarahalli ThimmannaEmail author
Article
  • 22 Downloads

Abstract

Nano particulate metal oxides gained significant research interest in recent years for various applications with the intension of exploring enhanced properties of miniaturization. In this research work, nickel tungstate nanoparticles (NiWO4 nanoparticles) were successfully synthesized via a simple and efficient sucrose-nitrate decomposition method. The synthesized nanoparticles were characterized using various analytical techniques such as PXRD, SEM, TEM, BET measurements and FTIR. Transmission electron microscope images reveals the nearly spherical shaped nanoparticles of average particle size 15–35 nm. Photoluminescence characteristics of synthesized NiWO4 nanoparticles were investigated at room temperature. Further, the prepared nanoparticles were utilized as glassy carbon electrode modifier for trace level electrochemical sensing of toxic mercury present in water samples. The electrochemical behavior of mercury(II) ions at modified electrode interface has been studied by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV). The results illustrate that, the proposed modified GCE sensor exhibits linearity between the concentration range 10–600 nM with the limit of detection 2.25 nM based on 3σ method for mercury(II) ions.

Notes

Acknowledgements

The author, Eranjaneya H, acknowledges the CSIR, New Delhi, India, for awarding CSIR-SRF fellowship and Siddaramanna A, acknowledges the Science and Engineering Research Board (ECR/2017/ 000743) Government of India, for financial support.

Supplementary material

10854_2018_635_MOESM1_ESM.docx (175 kb)
Supplementary material 1 (DOCX 174 KB)

References

  1. 1.
    T.-D. Nguyen, D. Mrabet, C.-T. T-T-D Vu, T.-O. Dinh, Do, CrystEngComm 13, 1450 (2011).  https://doi.org/10.1039/c0ce00091d CrossRefGoogle Scholar
  2. 2.
    Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. Nat. Nanotechnol. 5, 15 (2010)CrossRefGoogle Scholar
  3. 3.
    W. Yunjian, L. Li, G. Li, Appl. Surf. Sci. 393, 159–167 (2017)Google Scholar
  4. 4.
    S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Chem. Cent. J. 7, 80 (2013).  https://doi.org/10.1186/1752-153x-7-80 CrossRefGoogle Scholar
  5. 5.
    H. Eranjaneya, G.T. Chandrappa, Trans. Indian Ceram. Soc. 75, 133–137 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Fan, M.A. Snyder, S. Kumar et al. (2008) Nat. Mater. 7, 984.  https://doi.org/10.1038/nmat2302 https://www.nature.com/articles/nmat2302#supplementary-information
  7. 7.
    M.M. Mohamed, S.A. Ahmed, K.S. Khairou (2014) Appl. Catal. B 150, 63–73Google Scholar
  8. 8.
    R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Mater. Sci. Semicond. Process. 40, 123 (2015).  https://doi.org/10.1016/j.mssp.2015.05.037 CrossRefGoogle Scholar
  9. 9.
    S.M. El-Sheikh, M.M. Rashad, J. Cluster Sci. 26, 743 (2015).  https://doi.org/10.1007/s10876-014-0735-z CrossRefGoogle Scholar
  10. 10.
    M.M.J. Sadiq, U.S. Shenoy, D.K. Bhat, J. Phys. Chem. Solids 109, 124 (2017).  https://doi.org/10.1016/j.jpcs.2017.05.023 CrossRefGoogle Scholar
  11. 11.
    WH Organization (2011) World Health Organization, GenevaGoogle Scholar
  12. 12.
    A. Mirzaei, B. Hashemi, K. Janghorban, J. Mater. Sci. 27, 3109 (2016).  https://doi.org/10.1007/s10854-015-4200-z Google Scholar
  13. 13.
    Q. Bao, Z. Yang, Y. Song et al. (2018) J. Mater. Sci.  https://doi.org/10.1007/s10854-018-0447-5 Google Scholar
  14. 14.
    S.A. Prashanth, M. Pandurangappa, Mater. Lett. 185, 476 (2016).  https://doi.org/10.1016/j.matlet.2016.09.010 CrossRefGoogle Scholar
  15. 15.
    R.K. Upadhyay, S. Deshmukh, S. Saha, A. Barman, S.S. Roy, J. Mater. Sci. 26, 7515 (2015).  https://doi.org/10.1007/s10854-015-3387-3 Google Scholar
  16. 16.
    J. Li, L. Yan, H. Wang et al., J. Mater. Sci. 28, 3067 (2017).  https://doi.org/10.1007/s10854-016-5894-2 Google Scholar
  17. 17.
    V. Gangaiah, P. Adarakatti, A. Siddaramanna, P. Malingappa, G. Thimmanna Chandrappa, Mater. Res. Express 4, 085039 (2017)CrossRefGoogle Scholar
  18. 18.
    P.S. Adarakatti, M. Mahanthappa, E H.A. Siddaramanna, Electroanalysis 30, 1971–1982 (2018).  https://doi.org/10.1002/elan.201800124 CrossRefGoogle Scholar
  19. 19.
    A. Siddaramanna, P.S. Adarakatti, H. Eranjaneya, L. Shreenivasa, Appl. Chem. Eng. 2, 1–11 (2018).  https://doi.org/10.24294/jpd.v2i1.124 Google Scholar
  20. 20.
    Z. Wu, L. Jiang, H. Chen, C. Xu, X. Wang, J. Mater. Sci. 23, 858 (2012).  https://doi.org/10.1007/s10854-011-0506-7 Google Scholar
  21. 21.
    S. Li, X. Gu, Y. Zhao, Y. Qiang, S. Zhang, J. Mater. Sci. 27, 8455 (2016).  https://doi.org/10.1007/s10854-016-4860-3 Google Scholar
  22. 22.
    S. Mani, V. Vediyappan, S.-M. Chen et al. Sci. Rep. 6, 24128 (2016).  https://doi.org/10.1038/srep24128 https://www.nature.com/articles/srep24128#supplementary-information
  23. 23.
    L. Weber, U. Egli, J. Mater. Sci. 12, 1981 (1977).  https://doi.org/10.1007/bf00561969 CrossRefGoogle Scholar
  24. 24.
    KT Jacob, J. Mater. Sci. 12, 1647 (1977).  https://doi.org/10.1007/bf00542815 CrossRefGoogle Scholar
  25. 25.
    A. Sen, P. Pramanik, J. Eur. Ceram. Soc. 21, 745 (2001).  https://doi.org/10.1016/S0955-2219(00)00265-X CrossRefGoogle Scholar
  26. 26.
    J.H. Ryu, J.-W. Yoon, C.S. Lim, W.-C. Oh, K.B. Shim, Ceram. Int. 31, 883 (2005).  https://doi.org/10.1016/j.ceramint.2004.09.015 CrossRefGoogle Scholar
  27. 27.
    R. Talebi, J. Mater. Sci. 27, 3565 (2016).  https://doi.org/10.1007/s10854-015-4192-8 Google Scholar
  28. 28.
    O. Thoda, G. Xanthopoulou, G. Vekinis, A. Chroneos, Adv. Eng. Mater. 20, 1800047 (2018).  https://doi.org/10.1002/adem.201800047 DoiCrossRefGoogle Scholar
  29. 29.
    H. Eranjaneya, P.S. Adarakatti, A. Siddaramanna, P. Malingappa, G.T. Chandrappa, Mater. Sci. Semicond. Process. 86, 85 (2018).  https://doi.org/10.1016/j.mssp.2018.06.020 CrossRefGoogle Scholar
  30. 30.
    C. Choodamani, N. Gp, A. Siddaramanna, D. Prasad, B.R. Basavanna, G.T. Chandrappa, J. Alloys Compd. 103–109 (2013)Google Scholar
  31. 31.
    S. Anusha, B.S. Anandakumar, M. Chakrabhavi Dhananjaya et al. RSC Adv. 4, 52181–52188 (2014)Google Scholar
  32. 32.
    H. Eranjaneya, G.T. Chandrappa, J. Sol–Gel. Sci. Technol. 85, 585 (2018).  https://doi.org/10.1007/s10971-017-4545-2 CrossRefGoogle Scholar
  33. 33.
    N.J. Venkatesha, Y.S. Bhat, B.S. Jai Prakash, Appl. Catal. A 496, 51 (2015).  https://doi.org/10.1016/j.apcata.2015.02.036 CrossRefGoogle Scholar
  34. 34.
    M.M. Mohamed, S.A. Ahmed, K.S. Khairou, Appl. Catal. B 150, 63–73 (2014).  https://doi.org/10.1016/j.apcatb.2013.12.001 Google Scholar
  35. 35.
    I. Cesarino, É.T.G. Cavalheiro, Electroanalysis 20, 2301 (2008).  https://doi.org/10.1002/elan.200804325 CrossRefGoogle Scholar
  36. 36.
    W. Yantasee, Y. Lin, T.S. Zemanian, G.E. Fryxell, Analyst 128, 467 (2003).  https://doi.org/10.1039/b300467h CrossRefGoogle Scholar
  37. 37.
    H. Ju, D. Leech, J. Electroanal. Chem. 484, 150 (2000).  https://doi.org/10.1016/S0022-0728(00)00071-1 CrossRefGoogle Scholar
  38. 38.
    A. Walcarius, C. Delacôte, Anal. Chim. Acta 547, 3 (2005).  https://doi.org/10.1016/j.aca.2004.11.047 CrossRefGoogle Scholar
  39. 39.
    J. Cui, S. Xu, L. Wang, Sci. China Mater. 60, 352 (2017).  https://doi.org/10.1007/s40843-017-9019-4 CrossRefGoogle Scholar
  40. 40.
    H. Xing, J. Xu, X. Zhu et al., J. Electroanal. Chem. 760, 52 (2016).  https://doi.org/10.1016/j.jelechem.2015.11.043 CrossRefGoogle Scholar
  41. 41.
    A. Afkhami, S. Sayari, F. Soltani-Felehgari, T. Madrakian, J. Iran. Chem. Soc. 12, 257 (2015).  https://doi.org/10.1007/s13738-014-0480-0 CrossRefGoogle Scholar
  42. 42.
    M.-H. Chiu, J.-M. Zen, A.S. Kumar, D. Vasu, Y. Shih, Electroanalysis 20, 2265 (2008).  https://doi.org/10.1002/elan.200804307 DoiCrossRefGoogle Scholar
  43. 43.
    P.S. Adarakatti, V. Gangaiah, A. Siddaramanna Mater. Sci. Semicond. Process. 84: 157 (2018).  https://doi.org/10.1016/j.mssp.2018.05.010 CrossRefGoogle Scholar
  44. 44.
    H.R. Rajabi, M. Roushani, M. Shamsipur, J. Electroanal. Chem. 693, 16 (2013).  https://doi.org/10.1016/j.jelechem.2013.01.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hanumantharayappa Eranjaneya
    • 1
  • Prashanth Shivappa Adarakatti
    • 2
  • Ashoka Siddaramanna
    • 3
  • Chandrappa Gujjarahalli Thimmanna
    • 1
    Email author
  1. 1.Department of ChemistryBangalore UniversityBengaluruIndia
  2. 2.P. G. Department of ChemistryKLE’s P. C. Jabin Science CollegeVidyanagarIndia
  3. 3.Department of ChemistryDayananda Sagar UniversityKudlu Gate, BengaluruIndia

Personalised recommendations