Investigation of dopant effect on the electrochemical performance of 1-D polypyrrole nanofibers based glucose biosensor

  • Pramila Jakhar
  • Mayoorika Shukla
  • Vipul SinghEmail author


Glucose plays an imperative role in human metabolism and any imbalance in glucose concentration can cause chronic disease like diabetes mellitus. With the drastic increase in the number of diabetic patients around the world, demand for point of care testing device for continuous monitoring of blood glucose level has been accelerated. In this respect, electrochemical glucose biosensors play a vital role for measurement of glucose concentration in human blood. In this work, for the first time, we demonstrate a systematic study of the effect of two different types of dopants viz. lithium perchlorate (LiClO4) and para-toluenesulfonic acid (p-TSA) on the performance of polypyrrole (PPy) based enzymatic glucose biosensor. Both the dopants (LiClO4 and p-TSA) were utilized with the aim of improving the charge transfer capability of PPy films. The PPy nanofibers were synthesized over a Platinum coated glass substrate by electrochemical method. The morphological and electrochemical properties of electrosynthesized PPy nanofibers utilizing template-free method have been tailored by dopant variation (LiClO4 and pTSA) during electropolymerization. The as-prepared PPy nanofibers were used as a support matrix for enzyme immobilization. The as-fabricated enzymatic biosensors were later examined for the detection of glucose. Both the morphological and electrochemical properties of PPy electrode have been observed to improve with p-TSA (PPy–pTSA), as compared to LiClO4 (PPy–LiClO4). The as-fabricated PPy–pTSA/GOx based glucose biosensor has exhibited the highest sensitivity of 6.12 mA cm−2 M−1 with a linear range of 0.1–7.5 mM, which is better as compared to PPy-LiClO4/GOx biosensor. Additionally, the as-prepared PPy–pTSA/GOx biosensor has presented noteworthy stability, selectivity, and reproducibility that validates the importance of the dopant effect in electrosynthesized PPy based biosensing applications.



One of the authors Pramila is grateful to Sophisticated Instrument Centre, IIT Indore for providing FESEM, Fluorescence and Potentiostat/Galvanostat facilities. Pramila would also like to thank Dr. Mukul Gupta (University Grants Commission Department of Atomic Energy (UGC DAE) Consortium for Scientific Research Indore (M. P.), India) for the usage of the DC magnetron sputtering system. Pramila would like to thank Dr. Parasharam M. Shirage (Associate Professor, Discipline of Metallurgy Engineering and Materials Science IIT Indore) for providing access to Potentiostat/Galvanostat for EIS. Pramila would further like to thank the Ministry of Human Resource and Development (MHRD), India for providing the Teaching Assistantship (TA). Author, V. S. would like to thank the Director of IIT Indore for providing his constant support and encouragement for research.


  1. 1.
    Y. Yang, S. Li, W. Yang, J. Mater. Sci.: Mater. Electron. 24, 1382–1388 (2013)Google Scholar
  2. 2.
    M.S. Alsalhi, J. Alam, L.A. Dass, M. Raja, Int. J. Mol. Sci. 12, 2036–2054 (2011)CrossRefGoogle Scholar
  3. 3.
    M.T. Ramesan, V. Santhi, J. Mater. Sci.: Mater. Electron. 28, 18804–18814 (2017)Google Scholar
  4. 4.
    A.S. Nasab, M. Behpour, M.R. Nasrabadi, F. Ahmadi, S. Pourmasoud, F. Sedighi, Ultrason. Sonochem. 50, 46–58 (2018)CrossRefGoogle Scholar
  5. 5.
    C.S. Park, C. Lee, O.S. Kwon, Polymers 8, 249–267 (2016)CrossRefGoogle Scholar
  6. 6.
    T. Le, Y. Kim, H. Yoon, Polymers 9, 150–182 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Amani, M. Maleki, A. Khoshroo, A.S. Nasab, M.R. Nasrabadi, Anal. Biochem. 548, 53–59 (2018)CrossRefGoogle Scholar
  8. 8.
    B.K. Shrestha, R. Ahmad, S. Shrestha, C.H. Park, C. Sang, Sci. Rep. 7, 16191–16204 (2017)CrossRefGoogle Scholar
  9. 9.
    M.R. Arcila-Velez, M.E. Roberts, Chem. Mater. 26, 1601–1607 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Feng, Q. Zhang, J. Wang, H. Yang, H. Xu, W. Yan, RSC Adv. 5, 71593–71600 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Yang, M. Li, Y. Zhang, K. Yi, J. Ma, Y. Liu, J. Mater. Sci.: Mater. Electron. 25, 1047–1052 (2014)Google Scholar
  12. 12.
    M.Z. Çetin, P. Camurlu, RSC Adv. 8, 19724–19731 (2018)CrossRefGoogle Scholar
  13. 13.
    P.M. Nia, W.P. Meng, Y. Alias, J. Electrochem. Soc. 163, B8–B14 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Sadki, P. Schottland, G. Sabouraud, N. Brodie, Chem. Soc. Rev. 29, 283 (2000)CrossRefGoogle Scholar
  15. 15.
    U.P. García, J.G. Ibanez, N. Batina, Int. J. Electrochem. Sci. 6, 5172–5188 (2011)Google Scholar
  16. 16.
    P.A. Palod, V. Singh, Mater. Sci. Eng. C 55, 420–430 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Zang, C.M. Li, S.J. Bao, X. Cui, Q. Bao, C.Q. Sun, Macromolecules 41, 7053–7057 (2008)CrossRefGoogle Scholar
  18. 18.
    P.A. Palod, V. Singh, Sens. Actuators B 209, 85–93 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Jakhar, M. Shukla, V. Singh, J. Electrochem. Soc. 165, G80–G89 (2018)CrossRefGoogle Scholar
  20. 20.
    N. Su, H.B. Li, S.J. Yuan, S.P. Yi, E.Q. Yin, Express Polym. Lett. 6, 697–705 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Ozyilmaz, A.T. Ozyilmaz, F. Can, Appl. Biochem. Microbiol. 47, 196–205Google Scholar
  22. 22.
    T.C. Gokoglan, M. Kesik, S. Soylemez, R. Yuksel, H.E. Unalan, L. Toppare, J. Electrochem. Soc. 164, G59–G64 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Xu, S.B. Adeloju, Y. Wu, X. Zhang, Anal. Chim. Acta 755, 100–107 (2012)CrossRefGoogle Scholar
  24. 24.
    P.A. Palod, S.S. Pandey, S. Hayase, V. Singh, Appl. Biochem. Biotechnol. 174, 1059–1072 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Shukla, Pramila, T. Dixit, R. Prakash, I.A. Palani, V. Singh, Appl. Surf. Sci. 422, 798–808 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Chen, J. Li, X. Zhang, H. Xu, J. Mater. Sci. Mater. Electron. 29, 11020–11029 (2018)CrossRefGoogle Scholar
  27. 27.
    L. Niu, Q. Li, F. Wei, X. Chen, H. Wang, J. Electroanal. Chem. 544, 121–128 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Ramanavicius, A. Finkelsteinas, H. Cesiulis, A. Ramanaviciene, Bioelectrochemistry 79, 11–16 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Goel, N.A. Mazumdar, A. Gupta, Polym. Adv. Technol. 21, 205–210 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Raicopol, A. Prun, C. Damian, L. Pilan, Nanoscale Res. Lett. 8, 316–324 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Uang, T. Chou, Biosens. Bioelectron. 19, 141–147 (2003)CrossRefGoogle Scholar
  32. 32.
    E.M.I.M. Ekanayake, D.M.G. Preethichandra, K. Kaneto, Biosens. Bioelectron. 23, 107–113 (2007)CrossRefGoogle Scholar
  33. 33.
    V.K. Gupta, N. Atar, M.L. Yola, M. Eryılmaz, H. Torul, U. Tamer, I.H. Boyacı, Z. Üstündag˘. J. Colloid Interface Sci. 406, 231–237 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Shukla, Pramila, I.A. Palani, V. Singh, Mater. Res. Express 5, 055031 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular and Nanoelectronics Research Group (MNRG), Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations