Surface grain boundary passivation via mixed antisolvent and PC61BM assistant for stable perovskite solar cells

  • Hanying Mao
  • Yuelong HuangEmail author
  • Zhu MaEmail author
  • Lifen Jin
  • Liuwen Tian
  • Yuepeng Li
  • Hua Yu
  • Changtao Peng


Perovskite solar cells (PSCs) have attracted intense research interest in the last few years due to their excellent properties. However, the trap states at grain boundary (GBs) of perovskite films lead to charge recombination and perovskite film decomposition, which deteriorate the stability of PSCs. It has been demonstrated that the GBs passivation is an effective way to eliminate trap states and enhance the stability of PSCs. In this work, ethyl acetate (EA) and chlorobenzene (CB) were used as anti-solvent, mixing with phenyl-C61-butyric acid methyl ester (PC61BM) to replace pure antisolvent CB to control the GBs passivation of perovskite film. Meanwhile, enhanced interfacial hydrophobic characteristic effectively restricted the penetration of moisture. Correspondingly, with optimizing the volume ratio of EA/CB, the power conversion efficiency of PSCs based on CH3NH3PbI3 increased from 14.4 to 16.1% and the stability is greatly improved. This shows the adoption of a mixed solvent for EA and CB contained PC61BM as the solute can be used as an efficient tactic to passivate the surface crystal boundary, improve charge carrier transportation and device performance.



The authors gratefully acknowledge the financial support from Sichuan Science and Technology Program (Grant No. 2018JY0015), Young scholars development fund of SWPU (Grant No. 201699010017) and scientific research starting project of SWPU (Grant No. 2017QHZ021).


  1. 1.
    Y. Yu, S.W. Yang, L. Lei, Q.P. Cao, J. Shao, S. Zhang, Y. Liu, Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency. ACS Appl. Mater. Interfaces 9(4), 3667 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphrybaker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce, F. Deschler, R.L. Hoye, K.C. Gödel, T. Bein, P. Docampo, Blue-green color tunable solution processable organoleadchloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Xiang., Z. Ma, J. Zhuang, H. Lu, C. Jia, J. Luo, H. Li, X. Cheng, Y. Xiang, Z. Ma, Enhanced performance for planar perovskite solar cells with samarium-doped TiO2 compact electron transport layers. J. Phys. Chem. C 121(37), 20150–20157 (2017)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J. Cheng, H.M. Chen, M.C. Tsai, L.Y. Chen, A.A. Dubale, J.H. Bing, Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Shirayama, M. Kato, T. Miyadera, T. Sugita, T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, H. Fujiwara, Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. J. Appl. Phys. 119, 10–356 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015)CrossRefGoogle Scholar
  10. 10.
    Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516–522 (2016)CrossRefGoogle Scholar
  11. 11.
    D.Y. Son, J.W. Lee, Y.J. Choi, I.H. Jang, S. Lee, P.J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, Self-formed grain boundary healing layer for highly efficient CH3 NH3 PbI3 perovskite solar cells. J. Optim. Theory Appl. 159, 741–768 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Conings, L. Baeten, D.C. De, J. D’Haen, J. Manca, H.G. Boyen, Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014)CrossRefGoogle Scholar
  15. 15.
    H.B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J.Y. Kim, Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6, 6679–6683 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Zhang, N. Guo, G. Li, X. Qian, Y. Zhao, A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy 26, 50–56 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Park, H. Ko, H.S. Dong, K.C. Song, K. Cho, Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv. Funct. Mater. 27, 42 (2017)Google Scholar
  18. 18.
    Y. Shao, Z. Xiao, B. Cheng, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014)CrossRefGoogle Scholar
  19. 19.
    C.H. Chiang, C.G. Wu, Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat. Photon. 10, 103 (2016)CrossRefGoogle Scholar
  20. 20.
    C. Li, J. Sleppy, N. Dhasmana, M. Soliman, L. Tetard, J. Thomas, A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells. J. Mater. Chem. A 4, 30 (2016)Google Scholar
  21. 21.
    Y. Wang, J. Wu, P. Zhang, D. Liu, T. Zhang, L. Ji, X. Gu, Z.D. Chen, S. Li, Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 39, 30 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7, 1700576 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Campoyquiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D. Bradley, J. Nelson, Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat. Mater. 7, 158–164 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics. Adv. Mater. 28(23), 4727–4733 (2016)CrossRefGoogle Scholar
  26. 26.
    S.K. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K.C. Goedel, S.D. Stranks, N.K. Noel, M. Price, Atmospheric influence upon crystallization and electronic disorder and its impact on the photo-physical properties of organic-inorganic perovskite solar cells. ACS Nano 9, 2311–2320 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Mastroianni, F.D. Heinz, J.H. Im, W. Veurman, M. Padilla, M.C. Schubert, U. Würfel, M. Grätzel, N.G. Park, A. Hinsch, Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging. Nanoscale 7, 19653 (2015)CrossRefGoogle Scholar
  28. 28.
    G.S. Han, S.Y. Jin, F. Yu, M.L. Duff, B.K. Kang, J.K. Lee, Highly stable perovskite solar cells in humid and hot environment, J. Mater. Chem. A (2017) 5Google Scholar
  29. 29.
    Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J.M. Luther, M.C. Beard, Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2014)CrossRefGoogle Scholar
  30. 30.
    W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu, S. Wang, Z. Bian, C. Huang, Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Res. 8, 2474–2480 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grãtzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Han, Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, Size effect of TiO2 nanoparticles on the printable mesoscopic perovskite solar cell. J. Mater. Chem. A 3, 9103–9107 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Gao, Z. Zhu, B. Xu, S.B. Jo, Y. Kan, X. Peng, Highly efficient porphyrin-based opv/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29(47) (2017)Google Scholar
  35. 35.
    Z. Ma, H. Lu, F. Zhao, Y. Xiang, J. Zhuang, H. Li, Low-temperature dynamic vacuum annealing of ZnO thin film for improved inverted polymer solar cells, RSC. Adv. 7, 29357–29363 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhotovoltaicSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations