Advertisement

Composition dependence study of thermally evaporated nanocrystalline ZnTe thin films

  • Harinder Singh
  • Manmeet Singh
  • Jagtar Singh
  • Babankumar S. Bansod
  • Tejbir SinghEmail author
  • Anup Thakur
  • M. F. Wani
  • Jeewan Sharma
Article
  • 15 Downloads

Abstract

Composition dependent structural and morphological study of nanocrystalline ZnxTe100−x (0, 5, 20, 30, 40, 50) thin films has been performed. The effect of annealing on these properties is also investigated. Nanocrystalline alloys and thin films of ZnTe were prepared using conventional melt quenching technique and thermal evaporation technique, respectively. The prepared thin films were characterized using Field emission scanning electron microscope (FE-SEM), Atomic force microscope (AFM) and Raman spectroscopy. FE-SEM images show that thin films consist of spherical, compact, densely packed and well-connected grains without any cracks, pitfalls, voids or pinholes. 2-D and 3-D AFM images show grain growth with increasing annealing temperature with improvement in crystallinity and average roughness. Raman Spectra show only Te peaks related to A1 and E2 mode, for x = 0. With addition of Zn, ZnTe peaks arises and the presence of 1LO, 2LO and 3LO ZnTe modes are observed. Only ZnTe peaks are observed at x = 50, with diminishing of Te peaks. Annealing effect on Raman spectra and dark conductivity is also reported.

Notes

Acknowledgements

One of the authors (Dr. Tejbir Singh) is thankful to SERB, New Delhi for the financial support (SR/FTP/PS-081/2012) to carry out these investigations.

References

  1. 1.
    D.-H. Cho, W.-J. Lee, S.-W. Park, J.-H. Wi, W.S. Han, J. Kim, M.-H. Cho, D. Kim, Y.-D. Chung, Non-toxically enhanced sulfur reaction for formation of chalcogenide thin films using a thermal cracker. J. Mater. Chem. A 2, 14593–14599 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Liu, J. Zhu, Y. Xu, L. Zhou, Y. Li, L. Hu, J. Yao, S. Dai, SnX (X = S, Se) thin films as cost-effective and highly efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 51, 8108–8111 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Ahmad, K. Asokan, M. Zulfequar, Laser irradiation induced photo-crystallization in nano-structured amorphous Se90-xHgxS10 (x = 0, 5, 10, 15) thin films. RSC Adv. 6, 44321–44332 (2016)CrossRefGoogle Scholar
  4. 4.
    A.S. Aricò, D. Silvestro, P.L. Antonucci, N. Giordano, V. Antonucci, Electrodeposited thin film ZnTe semiconductors for photovoltaic applications. Adv. Perform. Mater. 4, 115–125 (1997)CrossRefGoogle Scholar
  5. 5.
    D.C. Sharma, S. Srivastava, Y.K. Vijay, Y.K. Sharma, Preparation and optical properties of ZnTe/ZnTe:Cr bilayer thin films. Int. J. Rec. Res. Rev. 2, 16–20 (2012)Google Scholar
  6. 6.
    A.K.S. Aqili, A.J. Saleh, Z. Ali, S. Al-Omari, Ag doped ZnTe films prepared by closed space sublimation and an ion exchange process. J. Alloys Compd. 520, 83–88 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Fauzi, D.G. Diso, O.K. Echendu, V. Patel, Y. Purandare, R. Burton, I.M. Dharmadasa, Development of ZnTe layers using an electrochemical technique for applications in thin-film solar cells. Semicond. Sci. Technol. 28, 045005 (2013)CrossRefGoogle Scholar
  8. 8.
    H.S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors (Academic Press, San Diego, 2007)Google Scholar
  9. 9.
    S.D. Kshirsagar, M.G. Krishna, S.P. Tewari, Optical characteristics of wurtzite ZnTe thin films. Mater. Sci. Semicond. Process. 16, 1002–1007 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Kim, K. Park, S. Lee, B. Yoo, Electrochemical synthesis of ZnTe thin films from citrate bath and their electrical properties with incorporation of Cu. Mater. Chem. Phys. 179, 10–16 (2016)CrossRefGoogle Scholar
  12. 12.
    I. Sharma, B.R. Mehta, Optical properties and band alignments in ZnTe nanoparticles/MoS2 layer heterointerface using SE and KPFM studies. Nanotechnology 28, 445701 (2017)CrossRefGoogle Scholar
  13. 13.
    V. Kumar, V. Kumar, D.K. Dwivedi, Growth and characterization of zinc telluride thin films for photovoltaic applications. Phys. Scr. 86, 015604 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Keshav, M. Padiyar, N. Meghana, M.G. Mahesha, Analysis of PV deposited ZnTe thin films through Urbach tail and photoluminescence spectroscopy. J. Lumin. 194, 257–263 (2018)CrossRefGoogle Scholar
  15. 15.
    D. Prakash, A.M. Aboraia, M. El-Hagary, E.R. Shaaban, K.D. Verma, Determination of the optical Constants and film thickness of ZnTe and ZnS thin films in terms of spectrophotometric and spectroscopic ellipsometry. Ceram. Int. 42, 2676–2685 (2016)CrossRefGoogle Scholar
  16. 16.
    A.R. Balu, V.S. Nagarethinam, A. Thayumanavan, K.R. Murali, C. Sanjeeviraja, M. Jayachandran, Effect of thickness on the microstructural, optoelectronic and morphological properties of electron beam evaporated ZnTe films. J. Alloys Compd. 502, 434–438 (2010)CrossRefGoogle Scholar
  17. 17.
    B. Kotlyarchuk, V. Savchuk, Investigation of ZnTe thin films grown by Pulsed Laser Deposition method. Phys. Status Solidi B 244, 1714–1719 (2007)CrossRefGoogle Scholar
  18. 18.
    M.F. Tanvir Hussain, S.M.A. Al-Kuhaili, H.A. Durrani, Qayyum, Influence of angle deposition on the properties of ZnTe thin films prepared by thermal evaporation. Ceram. Int. 44, 10130–10140 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Merita, T. Krämer, B. Mogwitz, B. Franz, A. Polity, B.K. Meyer, Oxygen in sputter-deposited ZnTe thin films. Phys. Status Solidi C 3, 960–963 (2006)CrossRefGoogle Scholar
  20. 20.
    L. Zhang, C. Liu, Q. Yang, L. Cui, Y. Zeng, Growth and characterization of highly nitrogen doped ZnTe films on GaAs (001) by molecular beam epitaxy. Mater. Sci. Semicond. Process. 29, 351–356 (2015)CrossRefGoogle Scholar
  21. 21.
    Yu.P. Gnatenko, P.M. Bukivskij, A.S. Opanasyuk, D.I. Kurbatov, M.M. Kolesnyk, V.V. Kosyak, H. Khlyap, Low-temperature photoluminescence of II–VI films obtained by close-spaced vacuum sublimation. J. Lumin. 132, 2885–2888 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Shobana, S.R. Meher, Experimental and ab-initio study of the structural, electronic and vibrational properties of ZnTe. J. Alloys Compd. 762, 260–271 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Soundararajan, Y. Lim, M.-P. Chun, K.H. Kim, Structure and electrical studies on nanostructured ZnTe thin films. Electron. Mater. Lett. 9, 177–182 (2013)CrossRefGoogle Scholar
  24. 24.
    E.R. Shaaban, I. Kansal, S.H. Mohamed, J.M.F. Ferreira, Microstructural parameters and optical constants of ZnTe thin films with various thicknesses. Physica B 404, 3571–3576 (2009)CrossRefGoogle Scholar
  25. 25.
    W. Mahmood, N.A. Shah, Effects of metal doping on the physical properties of ZnTe thin films. Curr. Appl. Phys. 14, 282–286 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, J. Li, H. Zhang, X. Pan, E. Xie, Thickness-dependent field emission from ZnTe films prepared by magnetron sputtering. J. Alloys Compd. 549, 88–91 (2013)CrossRefGoogle Scholar
  27. 27.
    T. Nakasua, W. Suna, M. Kobayashia, T. Asahi, Effect of Zn and Te beam intensity upon the film quality of ZnTe layers on severely lattice mismatched sapphire substrates by molecular beam epitaxy. J. Cryst. Growth 16, 120–130 (2016)Google Scholar
  28. 28.
    E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Özçelik, The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe thin films. Appl. Surf. Sci. 256, 1566–1572 (2009)CrossRefGoogle Scholar
  29. 29.
    O. Skhouni, A.E. Manouni, M. Mollar, R. Schrebler, B. Marí, ZnTe thin films grown by electrodeposition technique on fluorine tin oxide substrates. Thin Solid Films 564, 195–200 (2014)CrossRefGoogle Scholar
  30. 30.
    O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf, I.M. Dharmadasa, Growth and characterisation of n- and p-type ZnTe thin films for applications in electronic devices. Curr. Appl. Phys. 16, 120–130 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Ko, S. Park, S. An, C. Lee, Intense near-infrared emission from undoped ZnTe nanostructures synthesized by thermal evaporation. J. Alloys Compd. 580, 316–320 (2013)CrossRefGoogle Scholar
  32. 32.
    T. Potloga, D. Duca, M. Dobromir, Temperature-dependent growth and XPS of Ag doped ZnTe thin films deposited by close space sublimation method. Appl. Surf. Sci. 352, 33–37 (2015)CrossRefGoogle Scholar
  33. 33.
    G. Lastra, P.A. Luque, M.A. Quevedo-Lopez, A. Olivas, Electrical properties of p type ZnTe thin films by immersion in Cu solution. Mater. Lett. 126, 271–273 (2014)CrossRefGoogle Scholar
  34. 34.
    A.A. Ibrahim, N.Z. El-Sayed, M.A. Kaid, A. Ashour, Structural and electrical properties of evaporated ZnTe thin films. Vacuum 75, 189–194 (2004)CrossRefGoogle Scholar
  35. 35.
    H. Singh, T. Singh, A. Thakur, J. Sharma, Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique. AIP Conf. Proc. 1953, 030073 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Singh, P. Singh, A. Thakur, T. Singh, J. Sharma, Nanocrystalline ZnxTe100–x (x = 0, 5, 20, 30, 40, 50) thin films: structural, optical and electrical properties. Mater. Sci. Semicond. Process. 75, 276–282 (2018)CrossRefGoogle Scholar
  37. 37.
    H. Singh, N. Duklan, T. Singh, A. Thakur, J. Sharma, Effect of vacuum annealing on structural and optical properties of nanocrystalline ZnTe thin films. J. Mater. Sci. 29, 4992–4998 (2018)Google Scholar
  38. 38.
    H. Singh, T. Singh, A. Thakur, J. Sharma, Optical parameters of nanocrystalline Zn40Te60 thin films. Int. J. Adv. Res. Sci. Eng. 7, 214–219 (2018)Google Scholar
  39. 39.
    J.U. Ahamed, N.P. Begum, M.N.I. Khan, Property elucidation of vacuum-evaporated zinc telluride thin film towards optoelectronic devices. Sadhana 42, 1773–1781 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Chander, M.S. Dhaka, Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications. Physica E 80, 62–68 (2016)CrossRefGoogle Scholar
  41. 41.
    W. Szuszkiewicz, J.-F. Morhange, E. Janik, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, Raman spectroscopy of MBE-grown ZnTe-based nanowires. Phys. Status Solidi C 6, 2047–2052 (2009)CrossRefGoogle Scholar
  42. 42.
    P. Ilanchezhiyan, G.M. Kumar, F. Xiao, S. Poongothai, A.M. Kumar, C. Siva, S.U. Yuldashev, D.J. Lee, Y.H. Kwon, T.W. Kang, Ultrasonic-assisted synthesis of ZnTe nanostructures and 1 their structural, electrochemical and photoelectrical properties. Ultrason. Sonochem. 39, 414–419 (2017)CrossRefGoogle Scholar
  43. 43.
    J.C. Irwin, J. Lacombe, Raman scattering in ZnTe. J. Appl. Phys. 41, 1444–1450 (1970)CrossRefGoogle Scholar
  44. 44.
    Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P.D. Ye, One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 17, 3965–3973 (2017)CrossRefGoogle Scholar
  45. 45.
    K. Davami, J. Pohl, M. Shaygan, N. Kheirabi, H. Faryabi, G. Cuniberti, J.-S. Lee, M. Meyyappan, Bandgap engineering of CdxZn1−xTe nanowires. Nanoscale 5, 932–935 (2013)CrossRefGoogle Scholar
  46. 46.
    Y. Sun, Q. Zhao, J. Gao, Y. Ye, W. Wang, R. Zhu, J. Xu, L. Chen, J. Yang, L. Dai, Z.-M. Liao, D. Yu, In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanohetero-structures. Nanoscale 3, 4418–4426 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Singh, T. Singh, J. Sharma, Review on optical, structural and electrical properties of ZnTe thin films: effect of deposition techniques, annealing and doping. ISSS J. Micro Smart Syst. 7, 123–143 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NanotechnologySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of ChemistrySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  3. 3.Department of Mechanical EngineeringNational Institute of TechnologySrinagarIndia
  4. 4.Central Scientific Instruments OrganizationChandigarhIndia
  5. 5.Department of PhysicsSri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  6. 6.Advanced Materials Research Lab, Department of Basic and Applied SciencesPunjabi UniversityPatialaIndia

Personalised recommendations