Low temperature sintering and nonlinear dielectric properties of lithium-doped Ba0.6Sr0.4TiO3 thick films prepared by tape-casting

  • Xiao-Fei Zhang
  • Xiao-Hua ZuoEmail author
  • Yong-Bin Niu
  • Hui Xiong
  • X. H. Zuo


The thick films with nominal composition of Ba0.6Sr0.4TiO3+0.4 wt% Li2O were prepared through tape casting. The structure and nonlinear dielectric properties of the resulting thick films were investigated within the sintering temperature range of 1050–1100 °C. The thick film specimens sintered at the relatively low temperatures exihibited dense and no crack microstructure due to the addition of sintering aid Li2O and modified process technology. An obvious influence of sintering temperature on the microstructure and nonlinear dielectric properties was detected. The discrepancy in nonlinear dielectric properties among the specimens sintered at different temperatures was qualitatively interpreted in terms of interfacial charge accumulation and defect dipole reorientation. Sintering at 1080 °C was determined to be preferred for the specimens with regard to the nonlinear dielectric properties. At room temperature, the specimen attained a dielectric constant of 3050 and a relatively low dielectric loss tangent of 0.15% at 10 kHz together with a extremely large figure of merits (FOM) of 580 and a tunability of 88% at 10 kHz and 200 kV/cm.



This work was supported by the National Natural Science Foundation of China (No. 51372077), the China Scholarship Council (CSC) (Nos. 201708420295 and 201808420381) and Hubei Polytechnic University (No. 12xjz02R).


  1. 1.
    A.K. Tagantsev, V.O. Sherman, K.F. Astafiev et al., J. Electroceram. 11, 5 (2003)CrossRefGoogle Scholar
  2. 2.
    L.B. Kong, S. Li, T.S. Zhang et al., Prog. Mater Sci. 55, 840 (2010)CrossRefGoogle Scholar
  3. 3.
    T. Tick, J. Peräntie, H. Jantunen et al., J. Eur. Ceram. Soc. 28, 837 (2008)CrossRefGoogle Scholar
  4. 4.
    B. Su, T.W. Button, T. Price et al., J. Mater. Sci. 43, 847 (2008)CrossRefGoogle Scholar
  5. 5.
    Q. Xu, D. Zhan, D.P. Huang et al., Mater. Res. Bull. 70, 99 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Zhang, W.F. Hu, C. Meggs et al., J. Eur. Ceram. Soc. 27, 1047 (2007)CrossRefGoogle Scholar
  7. 7.
    V.K. Palukuru, J. Perantie, M. Komulainen et al., J. Eur. Ceram. Soc. 30, 389 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Valant, D. Suvorov, J. Am. Ceram. Soc. 87, 1222 (2004)CrossRefGoogle Scholar
  9. 9.
    Y.S. Ham, S.W. Yun, J.H. Koh, J. Electroceram. 26, 32 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Zhao, B.P. Zhang, P.F. Zhou et al., J. Eur. Ceram. Soc. 35, 533 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Jantunen, T. Hu, A. Unsimaki et al., J. Eur. Ceram. Soc. 24, 1077 (2004)CrossRefGoogle Scholar
  12. 12.
    C. Wang, H. Ji, J. Wang, J. Mater. Sci. 47, 2486 (2012)CrossRefGoogle Scholar
  13. 13.
    W.X. Zhang, L.H. Xue,. X.C. Zhou et al., J. Eur. Ceram. Soc. 26, 2793 (2006)CrossRefGoogle Scholar
  14. 14.
    X.F. Zhang, Q. Xu, Y.H. Huang et al., Ceram. Int. 36, 1405 (2010)CrossRefGoogle Scholar
  15. 15.
    B. Su, T.W. Button, J. Eur. Ceram. Soc. 21, 2777 (2001)CrossRefGoogle Scholar
  16. 16.
    X.F. Liang, Z.Y. Meng, W.B. Wu, J. Am. Ceram. Soc. 87, 2218 (2004)CrossRefGoogle Scholar
  17. 17.
    D. O’Neill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 1520 (2000)CrossRefGoogle Scholar
  18. 18.
    C. Ang, Z. Yu, Appl. Phys. Lett. 90, 202903 (2007)CrossRefGoogle Scholar
  19. 19.
    S.J. Lee, K.Y. Kang, S.K. Han, Appl. Phys. Lett. 75, 1784 (1999)CrossRefGoogle Scholar
  20. 20.
    H. Borkar, V. Rao, M. Tomar et al., J. Alloys Compd. 737, 821 (2018)CrossRefGoogle Scholar
  21. 21.
    X.F. Zhang, Q. Xu, D. Zhan et al., Ceram. Int. 38, 3465 (2012)CrossRefGoogle Scholar
  22. 22.
    Y.Y. Zhang, G.S. Wang, T. Zeng et al., J. Am. Ceram. Soc. 90, 1327 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Kaushal, S.M. Olhero, B. Singh et al., Ceram. Int. 40, 10593 (2014)CrossRefGoogle Scholar
  24. 24.
    S.H. Kim, J.H. Koh, J. Phys. Chem. Solids 71, 219 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Xue, Z.X. Xiong, H.P. Zhou, J. Am. Ceram. Soc. 90, 2653 (2007)CrossRefGoogle Scholar
  26. 26.
    M.H. Zhang, H. Wang, H.B. Yang et al., J. Alloys Compd. 509, L344 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Sengupta, S. Sengupta, Mater. Res. Innovations 2, 278 (1999)CrossRefGoogle Scholar
  28. 28.
    E. Ngo, P.C. Joshi, M.W. Cole et al., Appl. Phys. Lett. 79, 248 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-Fei Zhang
    • 1
  • Xiao-Hua Zuo
    • 2
    Email author
  • Yong-Bin Niu
    • 3
  • Hui Xiong
    • 1
  • X. H. Zuo
    • 1
  1. 1.School of Mathematics and PhysicsHubei Polytechnic UniversityHuangshiChina
  2. 2.School of Chemistry and Chemical EngineeringHubei Polytechnic UniversityHuangshiChina
  3. 3.North General Electronics Group CO., LTDSuzhouChina

Personalised recommendations