Study of triazine-based-polyimides composites working as gel polymer electrolytes in ITO-glass based capacitor devices
- 40 Downloads
Abstract
Two novel gel polymer electrolytes (GPEs) systems using triazine-based-polyimides (TPIs) working as both oxidizing and reducing dopants in the capacitors were prepared in this paper. Due to the advantages of highly flat surface of ITO glass electrodes, sandwich devices made of ITO as electrode material can be regarded as typical representatives of the double-layer capacitor. According to the results fitting with the modified Randles model, all chi squared values were lower than 1%. Cyclic voltammetry (CV) method and electrochemical impedance spectroscopy (EIS) method are introduced to explore the change of Faraday capacitance occurred on the electrode/electrolyte interface, as well as the transportation and diffusion of carriers on the electrode/electrolyte interface. The results of CV reveal that when the added TPI-1 concentration reaches 22 mg/mL, the REDOX peaks reach the maximum. The results of EIS show that when the concentration of TPI-2 was 2.8 mg/mL, the Warburg impedance value was only 30.3% of that of the original polymethyl methacrylate gel system. The results convincingly indicate the contribution of TPI-1 to the capacitance, and contribution of TPI-2 to the impedance in the GPEs, which demonstrated the extensive potential application of TPIs in GPEs materials.
Notes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (No. 51407134). This work was financially supported by the National Natural Science Foundation of China (No. 51407134), China Postdoctoral Science Foundation (No. 2016M590619), Natural Science Foundation of Shandong Province (No. ZR2016EEQ28) and The Qingdao Postdoctoral Application Research Project. The authors acknowledge the support from The Thousand Talents Plan, The World-Class University and Discipline, The Taishan Scholar’s Advantageous and Distinctive Discipline Program of Shandong Province and The World-Class Discipline Program of Shandong Province.
Compliance with ethical standards
Conflict of interest
We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.
References
- 1.H. Yu, L. Fan, J. Wu et al., RSC Adv. 2, 6736 (2012). https://doi.org/10.1039/c2ra20503c CrossRefGoogle Scholar
- 2.G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar
- 3.G. Lota, E. Frackowiak, Electrochem. Commun. 11, 87 (2009). https://doi.org/10.1016/j.elecom.2008.10.026 CrossRefGoogle Scholar
- 4.G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid Interface Sci. 536, 548–555 (2019). https://doi.org/10.1016/j.jcis.2018.10.084 CrossRefGoogle Scholar
- 5.S. Roldan, M. Granda, R. Menendez, R. Santamaria, C. Blanco, Electrochim. Acta 83, 241 (2012). https://doi.org/10.1016/j.electacta.2012.08.026 CrossRefGoogle Scholar
- 6.S. Roldan, Z. Gonzalez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Electrochim. Acta 56, 3401 (2011). https://doi.org/10.1016/j.electacta.2010.10.017 CrossRefGoogle Scholar
- 7.H. Yu, J. Wu, L. Fan et al., Electrochim. Acta 56, 6881 (2011). https://doi.org/10.1016/j.electacta.2011.06.039 CrossRefGoogle Scholar
- 8.M.L. Ma, Y.Y. Yang, D.L. Liao, P. Lyu, J.W. Zhang, J.L. Liang, L.Z. Zhang, (2018) Appl. Organomet. Chem. https://doi.org/10.1002/aoc.4708 Google Scholar
- 9.S.T. Senthilkumar, R.K. Selvan, J.S. Melo, J. Mater Chem. A 1, 12386 (2013). https://doi.org/10.1039/c3ta11959a CrossRefGoogle Scholar
- 10.S. Roldan, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Angew. Chem. Int. Edit. 50, 1699 (2011). https://doi.org/10.1002/anie.201006811 CrossRefGoogle Scholar
- 11.M.L. Ma, Y.Y. Yang, W.T. Li et al., J. Mater. Sci. 54, 323 (2019). https://doi.org/10.1007/s10853-018-2868-1 CrossRefGoogle Scholar
- 12.J.W. Li, J.W. Ma, S.J. Chen, Y.D. Huang, J.M. He, Mater. Sci. Eng. C-Mater. 89, 25 (2018). https://doi.org/10.1016/j.msec.2018.03.023 CrossRefGoogle Scholar
- 13.G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, J. Mater. Sci.: Mater. Electron. 28(1), 576–581 (2017)Google Scholar
- 14.Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Nano Energy 56, 138–150 (2019)CrossRefGoogle Scholar
- 15.G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci.: Mater. Electron. 28(9), 6544–6551 (2017)Google Scholar
- 16.J.W. Li, J.W. Ma, S.J. Chen, J.M. He, Y.D. Huang, Food Hydrocolloid 82, 363 (2018). https://doi.org/10.1016/j.foodhyd.2018.04.022 CrossRefGoogle Scholar
- 17.L. Zhuo, K. Kou, Y. Wang, P. Yao, G. Wu, J. Mater. Sci. 49(14), 5141–5150 (2014)CrossRefGoogle Scholar
- 18.G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Appl. Surf. Sci. 464, 472–478 (2019)CrossRefGoogle Scholar
- 19.Z. Jia, Z. Gao, D. Lan, Y. Cheng, G. Wu, H. Wu, Physics B 27(11), 117806 (2018) https://doi.org/10.1088/1674-1056/27/11/117806 Google Scholar
- 20.C. Pan, K. Kou, Y. Zhang, Z. Li, G. Wu, Composites B 153, 1–8 (2018)CrossRefGoogle Scholar
- 21.Z. Li, K. Kou, J. Zhang, Y. Zhang, Y. Wang, C. Pan, J. Mater. Sci.: Mater. Electron. 28, 6079 (2017). https://doi.org/10.1007/s10854-016-6284-5 Google Scholar
- 22.Z. Li, K. Kou, J. Zhang, H. Ma, J. Song, J. Mater. Sci.: Mater. Electron. 29, 9509 (2018). https://doi.org/10.1007/s10854-018-8984-5 Google Scholar
- 23.J. Zhong, L.-Q. Fan, X. Wu et al., Electrochim. Acta 166, 150 (2015). https://doi.org/10.1016/j.electacta.2015.03.114 CrossRefGoogle Scholar
- 24.L.Q. Mai, A. Minhas-Khan, X. Tian et al., Nature Commun. 4, 2923 (2013). https://doi.org/10.1038/ncomms3923 CrossRefGoogle Scholar