Study of triazine-based-polyimides composites working as gel polymer electrolytes in ITO-glass based capacitor devices

  • Ziyu Li
  • Kaichang KouEmail author
  • Jing Xue
  • Chen Pan
  • Guanglei WuEmail author


Two novel gel polymer electrolytes (GPEs) systems using triazine-based-polyimides (TPIs) working as both oxidizing and reducing dopants in the capacitors were prepared in this paper. Due to the advantages of highly flat surface of ITO glass electrodes, sandwich devices made of ITO as electrode material can be regarded as typical representatives of the double-layer capacitor. According to the results fitting with the modified Randles model, all chi squared values were lower than 1%. Cyclic voltammetry (CV) method and electrochemical impedance spectroscopy (EIS) method are introduced to explore the change of Faraday capacitance occurred on the electrode/electrolyte interface, as well as the transportation and diffusion of carriers on the electrode/electrolyte interface. The results of CV reveal that when the added TPI-1 concentration reaches 22 mg/mL, the REDOX peaks reach the maximum. The results of EIS show that when the concentration of TPI-2 was 2.8 mg/mL, the Warburg impedance value was only 30.3% of that of the original polymethyl methacrylate gel system. The results convincingly indicate the contribution of TPI-1 to the capacitance, and contribution of TPI-2 to the impedance in the GPEs, which demonstrated the extensive potential application of TPIs in GPEs materials.



This work was financially supported by the National Natural Science Foundation of China (No. 51407134). This work was financially supported by the National Natural Science Foundation of China (No. 51407134), China Postdoctoral Science Foundation (No. 2016M590619), Natural Science Foundation of Shandong Province (No. ZR2016EEQ28) and The Qingdao Postdoctoral Application Research Project. The authors acknowledge the support from The Thousand Talents Plan, The World-Class University and Discipline, The Taishan Scholar’s Advantageous and Distinctive Discipline Program of Shandong Province and The World-Class Discipline Program of Shandong Province.

Compliance with ethical standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.


  1. 1.
    H. Yu, L. Fan, J. Wu et al., RSC Adv. 2, 6736 (2012). CrossRefGoogle Scholar
  2. 2.
    G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Lota, E. Frackowiak, Electrochem. Commun. 11, 87 (2009). CrossRefGoogle Scholar
  4. 4.
    G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid Interface Sci. 536, 548–555 (2019). CrossRefGoogle Scholar
  5. 5.
    S. Roldan, M. Granda, R. Menendez, R. Santamaria, C. Blanco, Electrochim. Acta 83, 241 (2012). CrossRefGoogle Scholar
  6. 6.
    S. Roldan, Z. Gonzalez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Electrochim. Acta 56, 3401 (2011). CrossRefGoogle Scholar
  7. 7.
    H. Yu, J. Wu, L. Fan et al., Electrochim. Acta 56, 6881 (2011). CrossRefGoogle Scholar
  8. 8.
    M.L. Ma, Y.Y. Yang, D.L. Liao, P. Lyu, J.W. Zhang, J.L. Liang, L.Z. Zhang, (2018) Appl. Organomet. Chem. Google Scholar
  9. 9.
    S.T. Senthilkumar, R.K. Selvan, J.S. Melo, J. Mater Chem. A 1, 12386 (2013). CrossRefGoogle Scholar
  10. 10.
    S. Roldan, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Angew. Chem. Int. Edit. 50, 1699 (2011). CrossRefGoogle Scholar
  11. 11.
    M.L. Ma, Y.Y. Yang, W.T. Li et al., J. Mater. Sci. 54, 323 (2019). CrossRefGoogle Scholar
  12. 12.
    J.W. Li, J.W. Ma, S.J. Chen, Y.D. Huang, J.M. He, Mater. Sci. Eng. C-Mater. 89, 25 (2018). CrossRefGoogle Scholar
  13. 13.
    G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, J. Mater. Sci.: Mater. Electron. 28(1), 576–581 (2017)Google Scholar
  14. 14.
    Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Nano Energy 56, 138–150 (2019)CrossRefGoogle Scholar
  15. 15.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci.: Mater. Electron. 28(9), 6544–6551 (2017)Google Scholar
  16. 16.
    J.W. Li, J.W. Ma, S.J. Chen, J.M. He, Y.D. Huang, Food Hydrocolloid 82, 363 (2018). CrossRefGoogle Scholar
  17. 17.
    L. Zhuo, K. Kou, Y. Wang, P. Yao, G. Wu, J. Mater. Sci. 49(14), 5141–5150 (2014)CrossRefGoogle Scholar
  18. 18.
    G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Appl. Surf. Sci. 464, 472–478 (2019)CrossRefGoogle Scholar
  19. 19.
    Z. Jia, Z. Gao, D. Lan, Y. Cheng, G. Wu, H. Wu, Physics B 27(11), 117806 (2018) Google Scholar
  20. 20.
    C. Pan, K. Kou, Y. Zhang, Z. Li, G. Wu, Composites B 153, 1–8 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Li, K. Kou, J. Zhang, Y. Zhang, Y. Wang, C. Pan, J. Mater. Sci.: Mater. Electron. 28, 6079 (2017). Google Scholar
  22. 22.
    Z. Li, K. Kou, J. Zhang, H. Ma, J. Song, J. Mater. Sci.: Mater. Electron. 29, 9509 (2018). Google Scholar
  23. 23.
    J. Zhong, L.-Q. Fan, X. Wu et al., Electrochim. Acta 166, 150 (2015). CrossRefGoogle Scholar
  24. 24.
    L.Q. Mai, A. Minhas-Khan, X. Tian et al., Nature Commun. 4, 2923 (2013). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Natural and Applied SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and EngineeringQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations