Advertisement

Effect of thermal calcination on the structural, dielectric and magnetic properties of (ZnO–Ni) semiconductor

  • Rajwali Khan
  • Zulfiqar
  • Clodoaldo Irineu Levartoski de Araujo
  • Tahirzeb Khan
  • Shaukat Ali Khattak
  • Ejaz Ahmed
  • Aurangzeb Khan
  • Burhan Ullah
  • Gulzar Khan
  • Kashif Safeen
  • Akif Safeen
  • Syed Adnan Raza
Article
  • 20 Downloads

Abstract

We report the variations in structural, dielectric and magnetic properties with elevation of calcination temperature of (ZnO, Ni), synthesized by hydrothermal route. Incorporation of Ni in ZnO lattice is accompanied by numerous oxygen vacancies. With increasing calcinations temperature, enhancement in particle size with improvement in crystallization are observed, which is most probably due to grain growth having less number of grain boundaries and enhancement in grain volume. The dielectric behavior gives deep insight of (ZnO, Ni) nanoparticles microstructure. The abrupt increase in A.C. conductivity (σa.c) at high frequencies arises due to the addition of detached charge carrier from trap states to the conduction charge carriers. The (ZnO, Ni) nanoparticles, calcined at different temperatures, show significant changes in the hysteresis loop of ZnO nanoparticles: the loop shows strong ferromagnetic (FM) behavior. The magnetization enhances with increasing the calcination temperature of the particle (Ni, ZnO). Defects (oxygen vacancies) are found to be the main reason for room-temperature ferromagnetism (RTFM) in the (ZnO, Ni) nanoparticles. The enhanced dielectric and magnetic properties of (ZnO, Ni) nanoparticles are strongly correlated with the increase of oxygen vacancies.

Notes

Acknowledgements

This work is financially supported by the Higher Education Research Endowment Fund (NO.PMU1-22/HEREF/2014-15/Vol-111/) Khyber Pakhtunkhwa (KPK) Pakistan, Higher Education Commission under START-UP RESEARCH GRANT PROGRAM (Grant No: 21-1525/SRGP/R&D/HEC/2017), (Grant No: 21-1732/SRGP/R&D/HEC/2017), (Grant No: 21-1553/SRGP/R&D/HEC/2017) and Grant No: 21-1287/SRGP/R&D/HEC/2016 the Fundamental Research Funds for the Higher Education Commission (HEC) Pakistan.

References

  1. 1.
    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  2. 2.
    D. Ferrand et al. Phys. Rev. B 63, 085201 (2001)CrossRefGoogle Scholar
  3. 3.
    H. Ohno, Science 281, 951 (1998)CrossRefGoogle Scholar
  4. 4.
    T. Dietl, H. Ohno, Science 287, 1019 (2000)CrossRefGoogle Scholar
  5. 5.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science. 294, 1488 (2001)CrossRefGoogle Scholar
  6. 6.
    A. Fert, Angewandte, Chem. Int. Edition. 47, 5956–5967 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science. 287, 1019–1022 (2000)CrossRefGoogle Scholar
  8. 8.
    X.Y. Xu, C.B. Cao, J. Magn. Magn, Mater. 14, 2216–2219 (2009)CrossRefGoogle Scholar
  9. 9.
    R. Varadhaseshan, S.S. Meenakshi, Appl. Surf. Sci. 258, 7161–7165 (2012)CrossRefGoogle Scholar
  10. 10.
    K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K. Chung, Ceram. Int. 40, 16799–16804 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Siddheswaran, S. Marie Netrvalová, N. Jarmila, O. Petr, S. Jan, Pavol, Jr. Jaroslav, R., Jayavel, J. Alloy. Compd. 636, 85–92 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci. 356, 804–811 (2015)CrossRefGoogle Scholar
  13. 13.
    X.J. Liu, X.Y. Zhu, C. Song, F. Zeng, F. Pan, J. Phys. D: Appl. Phys. 42, 035004 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Satyarthi, S. Ghosh, B. Pandey, P. Kumar, C.L. Chen, C.L. Dong, W.F. Pong, D. Kanjilal, K. Asokan, P. Srivastava, J. Appl. Phys. 113, 183708 (2013)CrossRefGoogle Scholar
  15. 15.
    L.-N. Tong, X.-M. He, H.-B. Han, J.-L. Hu, A.-L. Xia, Y. Tong, Solid State Commun. 150, 1112–1116 (2010)CrossRefGoogle Scholar
  16. 16.
    R.K. Singhal, S.C. Sharma, P. Kumari, S. Kumar, Y.T. Xing, U.P. Deshpande, T. Shripathi, E. Saitovitch, J. Appl. Phys. 109, 063907 (2011)CrossRefGoogle Scholar
  17. 17.
    J.J. Chen, M.H. Yu, W.L. Zhou, K. Sun, L.M. Wang, Appl. Phys. Lett. 87, 173119 (2005)CrossRefGoogle Scholar
  18. 18.
    Y.M. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.H. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123, 134701 (2005)CrossRefGoogle Scholar
  19. 19.
    L.W. Yang, W.L. Wu, T. Qin, G.G. Siu, P.K. Chu, J. Appl. Phys. 99, 074303 (2006)CrossRefGoogle Scholar
  20. 20.
    R. Khan, C.I. Zulfiqar Levartoski T. de Araujo, M.U. Khan, Z.U. Rahman, A. Rehman, B. Khan, S. Ullah, Fashu, J. Mater. Sci. Mater. Electron.  https://doi.org/10.1007/s10854-018-9018-zS
  21. 21.
    M. Zhong, Y. Li, Y. Hu, M. Zhu, W. Li, H. Jin, S. Wang, Y. Li, H. Zhao, J. Alloy. Compd. 647, 823e829 (2015)CrossRefGoogle Scholar
  22. 22.
    S.A. Ahmed, Results in Physics. 7, 604–610 (2017)CrossRefGoogle Scholar
  23. 23.
    Z.N. Kayani, F. Saleemi, I. Batoo, Appl. Phys. A. 719, 713–720 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Tanaka, Z. Makiya, K. Kato, Uematsu, J. Eur. Ceram. Soc. 29, 955–959 (2009)CrossRefGoogle Scholar
  25. 25.
    R. Khan, M.U. Zulfiqar, S. Rehman, Z.U. Fashu, Rehman, J. Mater. Sci. Mater. Electron. 28, 10122–10130 (2017)CrossRefGoogle Scholar
  26. 26.
    R. Khan, M. Fang, Chin. Phys. B 24, 127803 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Khan, S. Zulfiqar, Y. Fashu, Zaman, J. Mater. Sci. Mater. Electron. 27, 5960–5966 (2016)CrossRefGoogle Scholar
  28. 28.
    R. Khan, M.U. Zulfiqar, Z.U. Rahman, S. Rehman, Fashu, J. Mater. Sci. Mater. Electron. 27, 10532–10540 (2016)CrossRefGoogle Scholar
  29. 29.
    R. Zulfiqar, M.U. Khan, Z. Rahman, Iqbal, J. Mater. Sci. Mater. Electron. 27, 12490–12498 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Khan, S. Fashu, Z.U. Rehman, J. Mater. Sci. Mater. Electron. 28, 4333–4339 (2017)CrossRefGoogle Scholar
  31. 31.
    R. Khan, S. Zulfiqar, Fashu, J. Mater. Sci. Mater. Electron. 29, 32–37 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Simimol, A. Aji, Anappara, C. Harish, Barshilia, Mater. Res. Express. 4, 015001 (2017)CrossRefGoogle Scholar
  33. 33.
    M.H. Sukkar, K.H. Johnson, H.L. Tuller, Materi. Sci. Eng. B. 61, 49–59 (1990)CrossRefGoogle Scholar
  34. 34.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, Nano-Micro Lett. 7, 219–242 (2015)CrossRefGoogle Scholar
  35. 35.
    Mahnaz, Alijani, Nasrollah Najibi Ilkhechi, Silicon https:// https://doi.org/10.1007/s12633-018-9792-5
  36. 36.
    B.U. Haq, R. Ahmed, G. Abdellatif, A. Shaari, F.K. Butt, M.S.G. Benali Kanoun. Said Front. Phys. 11, 117101 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Angew Origin, development, and future of spintronics (Nobel Lecture), Chem. Int. Ed. 47, 5956–5967 (2008)Google Scholar
  38. 38.
    Y. Lin, D. Jiang, F. Lin, W. Shi, M. Xueming, J. Alloy. Compd. 436, 30–33 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Fabbiyola, V. Sailaja, L. John Kennedy, M. Bououdina, J. Judith Vijaya, J. Alloy. Compd. 694, 522–531 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Samantaa, M.N. Goswamib, P.K. Mahapatra, J. Alloy. Compd. 730, 399–407 (2018)CrossRefGoogle Scholar
  41. 41.
    K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Ceramics International. 40, 16799–16804 (2014)CrossRefGoogle Scholar
  42. 42.
    G. Fang, Z. Jun, W.U. Kangbing, Journal of Wuhan University of Technology-Mater. 25, 5 (2010)Google Scholar
  43. 43.
    G. Srinet, R. Kumar, V. Sajal. J. Appl. Phy. 114, 033912 (2013)CrossRefGoogle Scholar
  44. 44.
    R. Kevin. Kittilstved, R. Daniel, R. Gamelin, J. Am. Chem. Soc. 127, 5292–5293 (2005)CrossRefGoogle Scholar
  45. 45.
    K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Phys. Rev. Lett. 97, 037203–037204 (2006)CrossRefGoogle Scholar
  46. 46.
    J.F. Felix, M. Aziz, C.I.L.de Araujo, W.M. de Azevedo, V. Anjos, E.F. da Silva Jr and M. Henini. Semicond Sci Technol. 29, 045021 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rajwali Khan
    • 1
    • 4
    • 6
  • Zulfiqar
    • 1
  • Clodoaldo Irineu Levartoski de Araujo
    • 2
  • Tahirzeb Khan
    • 1
  • Shaukat Ali Khattak
    • 1
  • Ejaz Ahmed
    • 1
  • Aurangzeb Khan
    • 1
  • Burhan Ullah
    • 3
  • Gulzar Khan
    • 1
  • Kashif Safeen
    • 1
  • Akif Safeen
    • 1
    • 5
  • Syed Adnan Raza
    • 6
  1. 1.Department of PhysicsAbdul Wali Khan University MardanMardanPakistan
  2. 2.Departamento de F ́ ısicaUniversidade Federal de Vi ̧ cosa-UFVVi ̧cosaBrazil
  3. 3.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  4. 4.Department of PhysicsZhejiang UniversityHangzhouChina
  5. 5.Department of PhysicsUniversity of PoonchRawlakotPakistan
  6. 6.Centro Brasileiro de Pesquisas Fı´sicasRio de JaneiroBrazil

Personalised recommendations