Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19344–19352 | Cite as

Effect of pH on the phase transformation of strontium titanium materials and their photocatalytic property

  • Juan Xie
  • Chen Yang
  • Yawen He
  • Hu Wang
Article
  • 54 Downloads

Abstract

Strontium titanium (Sr/Ti) system materials with different morphologies (like nanospheres, sheet-like, nanocubes) were synthesized via hydrothermal method by adjusting the solution pH. The main purpose was to study the effect of pH value on phase and morphologies of Sr/Ti system materials. Four different phases of catalysts (Ti4O7/SrF2/TiO2, TiO2/SrF2, TiO2, SrTiO3) were prepared when pH value of the reactant solution was 1.5, 3, 6, 14, respectively. The photocatalytic performance of the as-obtained catalysts with different phase has been investigated in rhodamine B (RhB) solution. The results show that four products exhibit great difference in photocatalytic RhB performance. Furthermore, the photodegradation efficiency and kinetic results show: Ti4O7/SrF2/TiO2 > TiO2 > SrF2/TiO2 > SrTiO3. The probable influence factors have been explored. The photocatalysts were characterized by X-ray diffraction, ultraviolet visible diffuse reflectance spectroscopy, scanning electron microscope and Mott–Schottky (M–S) curves. The results show that phases transformation, crystalline size, and morphologies may affect the photocatalytic properties a lot.

Notes

Acknowledgements

This work was financially supported by Sichuan College Laboratory of Materials of Oil and Gas Field (X151517KCL47, X151517KCL32), Scientific Research Foundation of Sichuan Science and Technology Agency (2018RZ0043).

Compliance with ethical standards

Conflict of interest

Have no conflicts of interest regarding the publication of this manuscript.

References

  1. 1.
    L. Wu, B. Shen, Q. Hu, J. Chen, Y. Wang, Y. Xia, J. Yin, Z. Liu, J. Am. Ceram. Soc. 100, 4670 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Liu, X.M. Yu, B. Zhang, S.X. Meng, Y.Q. Feng, Chin. Chem. Lett. 28, 765 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Chen, T. Yuan, F. Wang, J. Hu, W. Tu, J. Mater. Sci. Mater. Electron. 27, 9983 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Ali, E. Rabia, N. Abdul, R. Abbas, S. Hakeem, M. Mazhar, J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-9445-x CrossRefGoogle Scholar
  5. 5.
    R. Tang, L. Yin, J. Mater. Chem. A. 3, 17417 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Hu, H. Ma, Y. Tanaka, L. Zhao, Q. Feng, Chem. Mater. 27, 4983 (2015)CrossRefGoogle Scholar
  7. 7.
    Y.F. Zhu, L. Xu, J. Hu, J. Zhang, R.G. Du, C.J. Lin, Electrochim. Acta 121, 361 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Fuentes, R.A. Zarate, E. Chavez, P. Muñoz, D. Díaz-Droguett, P. Leyton, J. Mater. Sci. 45, 1448 (2010)CrossRefGoogle Scholar
  9. 9.
    A.Q.D. Faisal, J. Mater. Sci. Mater. Electron. 26, 317 (2014)CrossRefGoogle Scholar
  10. 10.
    H.A.J.L. Mourão, O.F. Lopes, W. Avansi, M.J.M. Pires, S. Souza, C. Ribeiro, V.R. Mastelaro, Mater. Sci. Semicond. Process. 68, 140 (2017)CrossRefGoogle Scholar
  11. 11.
    Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I.D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 15, 611 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Areerob, K. Youn, C. Won, C. Oh, J. Mater. Sci. Mater. Electron. 29, 1 (2017)Google Scholar
  13. 13.
    H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Appl. Catal. B 226, 311 (2018)CrossRefGoogle Scholar
  14. 14.
    Z. Zhang, W. Jing, X. Tan, T. Yu, J. Ma, J. Mater. Sci. 53, 6170 (2018)CrossRefGoogle Scholar
  15. 15.
    U. Sulaeman, S. Yin, T. Sato, IOP Conf, Ser. Mater. Sci. Eng. 18, 1 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Ouyang, H. Tong, N. Umezawa, J. Cao, P. Li, Y. Bi, Y. Zhang, J. Ye, J. Am. Chem. Soc. 134, 1974 (2012)CrossRefGoogle Scholar
  17. 17.
    S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou, C.C. Chen, J. Taiwan Inst. Chem. Eng. 45, 1927 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Yue, J. Zhang, F. Yan, X. Wang, F. Huang, Appl. Surf. Sci. 319, 68 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Fang, B. Tang, Y. Yuan, X. Zhang, S. Zhang, J. Am. Ceram. Soc. 101, 1 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Xie, Y. He, J. Tang, Y. Wang, M. Chamas, H. Wang, J. Mol. Liq. 250, 388 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Wu, L. Li, Y. cheng Xue, G. Xu, L. Tang, N. Liu, W. yuan Huang, Appl. Catal. B 228, 103 (2018)CrossRefGoogle Scholar
  22. 22.
    C. Trellu, C. Coetsier, J.C. Rouch, R. Esmilaire, M. Rivallin, M. Cretin, C. Causserand, Water Res. 131, 310 (2018)CrossRefGoogle Scholar
  23. 23.
    V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Inorg. Chem. 51, 7164 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Zhu, W. Yao, R. Zong, Photocatalysis: Application on Environmental Purification and Green Energy, 1st edn. (Chemical Industrial Press, Beijing, 2015), pp. 24–35Google Scholar
  25. 25.
    P. Sivakarthik, V. Thangaraj, M. Parthibavarman, J. Mater. Sci. Mater. Electron. 28, 5990 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Xiao, S. Tu, M. Lu, H. Zhong, C. Zheng, X. Zuo, J. Nan, Appl. Catal. B 198, 124 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Wang, P. Guo, M. Dou, J. Wang, Y. Cheng, P.G. Jönsson, Z. Zhao, RSC Adv. 4, 51008 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Grätzel, Nature. 338, 414 (2001)Google Scholar
  29. 29.
    J. Xie, Y. He, X. Li, M. Duan, J. Tang, Y. Wang, M. Chamas, H. Wang, J. Mater. Sci. Mater. Electron. 28, 14981 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Zhuang, J. Sun, M. Guan, J. Alloys Compd. 662, 84 (2016)CrossRefGoogle Scholar
  31. 31.
    Z. Wang, C. Chen, F. Wu, B. Zou, M. Zhao, J. Wang, C. Feng, J. Saudi Chem. Soc. 164, 615 (2009)Google Scholar
  32. 32.
    S.P. Patil, B. Bethi, G.H. Sonawane, V.S. Shrivastava, S. Sonawane, J. Ind. Eng. Chem. 34, 356 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Kachbouri, N. Mnasri, E. Elaloui, Y. Moussaoui, J. Saudi Chem. Soc. 22, 405 (2018)CrossRefGoogle Scholar
  34. 34.
    Y. Luan, L. Jing, Q. Meng, H. Nan, P. Luan, M. Xie, Y. Feng, J. Phys. Chem. C 116, 17094 (2012)CrossRefGoogle Scholar
  35. 35.
    W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Environ. Sci. Technol. 45, 2987 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Song, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, ACS Sustain. Chem. Eng. 6, 4000 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Chen, H. Gao, J. Xiang, X. Dong, Y. Cao, Mater. Res. Bull. 99, 26 (2017)Google Scholar
  38. 38.
    S. Duo, C. Zhong, J. Zhang, Z. Liu, R. Zhong, T. Liu, J. Mater. Sci. Mater. Electron. 29, 2974 (2017)CrossRefGoogle Scholar
  39. 39.
    C. Zhang, A. Cao, L. Chen, K. Lv, T. Wu, K. Deng, RSC Adv. 8, 21431 (2018)CrossRefGoogle Scholar
  40. 40.
    X. Liu, Y. Huang, C. Qin, H.J. Seo, Appl. Surf. Sci. 427, 636 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSouthwest Petroleum University (SWPU)ChengduChina
  2. 2.College of Chemistry and Chemical EngineeringSouthwest Petroleum University (SWPU)ChengduChina

Personalised recommendations