Advertisement

Investigation of structural, morphological, optical and electrical properties of double-doping Lanthanum ferrite

  • F. B. AbdallahEmail author
  • A. Benali
  • M. Triki
  • E. Dhahri
  • K. Nomenyo
  • G. Lerondel
Article
  • 46 Downloads

Abstract

Polycrystalline compounds of La0.75Ba0.25−xSrxFeO3 containing different amounts of Sr (x = 0.00, 0.05, 0.10 and 0.15) were synthesized by the sol–gel method. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), FTIR and Raman spectroscopy, UV–Vis spectroscopy and I–V electrical measurements. XRD analysis reveals that all samples possess an orthorhombic structure with Pnma space group. The Lattice parameter values are found to decrease with the increase of Sr contents. The surface morphology and microstructure were analyzed using SEM images. It is found that all samples have similar microstructure morphology, but differ in the range of grain sizes. Raman spectroscopy measurements exhibit slight shift in Raman modes with Sr-doping. A shift of characteristic peaks for Fe–O bond in FTIR spectra were observed with the increase of Sr content. Using the Tauc plot methodology, the optical band gap values have been evaluated from the UV–Vis measurements. These values increase with Sr content. Finally, room temperature electrical resistivity decreases with Sr content increasing. The obtained results show that the structural, optical and electrical properties have low strongly affected by the strontium content.

Notes

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research. This research work was partially conducted using the Nano’mat platform equipment.

References

  1. 1.
    C.A. Dixon, C.M. Kavanagh, K.S. Knight, W. Kockelmann, F.D. Morrison, P. Lightfoot, J. Solid State Chem. 230, 337 (2015)CrossRefGoogle Scholar
  2. 2.
    S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu, N.K. Labhsetwar, Int. J. Hydrog. Energy 37, 10451 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Huang, H.Y. Lee, J.B. Goodenough, J. Electrochem. Soc. 145, 3220 (1998)CrossRefGoogle Scholar
  4. 4.
    G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Sens. Actuator B 55, 99 (1999)CrossRefGoogle Scholar
  5. 5.
    Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Nature 418, 164 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, R. Hayn, J. Alloys Compd. 731, 655 (2018)CrossRefGoogle Scholar
  7. 7.
    W.C. Koehler, E.O. Wollan, J. Phys. Chem. Solids 2, 100 (1957)CrossRefGoogle Scholar
  8. 8.
    S.M. Selbach, J.R. Tolchard, A. Fossdal, T. Grande, J. Solid State Chem. 196, 249 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Benali, M. Bejar, E. Dhahri, M. Sajieddine, M.P.F. Graça, M.A. Valente, Mater. Chem. Phys. 149–150, 467 (2015)CrossRefGoogle Scholar
  10. 10.
    A.S. Mahapatra, A. Mitra, A. Mallick, M. Ghosh, P.K. Chakrabarti, Mater. Lett. 169, 160 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Nawaz, H. Malik, M.F. Warsi, M. Shahid, I. Shakir, A. Wadood, M.A. Khan, Ceram. Int. 41, 6812 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Jones, M.S. Islam, J. Phys. Chem. C 112, 4455–4462 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Jain, S. Srivastava, N. Gupta, in International Conference on Condensed Matter and Applied Physics, Rajasthan (2015)Google Scholar
  15. 15.
    H. Wu, Z. Xia, X. Zhang, S. Huang, M. Wei, F. Yang, Y. Song, G. Xiao, Z. Ouyang, Z. Wang, Ceram. Int. 44, 146–153 (2018)CrossRefGoogle Scholar
  16. 16.
    L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Mater. Chem. Phys. 125, 305–308 (2011)CrossRefGoogle Scholar
  17. 17.
    N. Karthikeyan, R. Ramesh Kumar, G. Jaiganesh, K. Sivakumar, Physica B 529, 1–8 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Ceram. Int. 40, 14367 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Ita, P. Murugavel, V. Ponnambalam, A.R. Raju, J. Chem. Sci. 115, 519 (2003)CrossRefGoogle Scholar
  20. 20.
    L.T. Sagdahl, M.-A. Einarsrud, T. Grande, J. Am. Ceram. Soc. 83, 2318 (2000)CrossRefGoogle Scholar
  21. 21.
    X.P. Dai, Q. Wu, R.J. Li, C.C. Yu, Z.P. Hao, J. Phys. Chem. B 110, 25856 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Benali, A. Souissi, M. Bejar, E. Dhahri, M.F.P. Graça¸, M.A. Valente, Chem. Phys. Lett. 637, 7 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Milanova, J. Zaharieva, R. Todorovska, D. Todorovsky, Thin Solid Films 562, 43 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Nakayama, J. Mater. Sci. 36, 5643 (2001)CrossRefGoogle Scholar
  25. 25.
    F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, Superlatt. Microstruct. 117, 260 (2018)CrossRefGoogle Scholar
  26. 26.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  27. 27.
    G. Aravind, M. Raghasudha, D. Ravinder, J. Magn. Magn. Mater. 378, 278 (2015)CrossRefGoogle Scholar
  28. 28.
    N.S. Goncalves, J.A. Carvalho, Z.M. Lima, J.M. Sasaki, Mater. Lett. 72, 36 (2012)CrossRefGoogle Scholar
  29. 29.
    K.S. Rao, B. Tilak, K. Ch, V. Rajulu, A. Swathi, H. Workineh, J. Alloys Compd. 509, 7121 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Raghasudha, D. Ravinder, P. Veerasomaiah, Adv. Mater. Phys. Chem. 3, 89 (2013)CrossRefGoogle Scholar
  31. 31.
    S.T. Alone, K.M. Jadhav, Pramana, J. Phys. 70, 173 (2008)Google Scholar
  32. 32.
    S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, N. Ponpandian, Chem. Eng. J. 209, 420 (2012)CrossRefGoogle Scholar
  33. 33.
    C. Sasikala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini, E. Manikandan, J. Alloys Compd. 712, 870 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Janbutrach, S. Hunpratu, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Curr. Appl. Phys. 13, 340 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Colomban, A. Slodczyk, Opt. Mater. 31, 1759 (2009)CrossRefGoogle Scholar
  37. 37.
    W. Chaabani, A. Melliti, A. Moadhen, M.A. Maaref, C. Testelin, A. Lemaître, M. Oueslati, Silicon 8, 1 (2016)CrossRefGoogle Scholar
  38. 38.
    I.S. Smirnova, Physica B 262, 247 (1999)CrossRefGoogle Scholar
  39. 39.
    M. Popa, L.V. Hong, M. Kakihana, Physica B 327, 233 (2003)CrossRefGoogle Scholar
  40. 40.
    S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Cryst. Growth Des. 13, 291 (2013)CrossRefGoogle Scholar
  41. 41.
    L. Martín-Carrón, A. De Andrés, M.J. Martínez-Lope, M.T. Casais, J.A. Alonso, Phys. Rev. B 66, 174303 (2002)CrossRefGoogle Scholar
  42. 42.
    F.A. Mir, M. Ikrama, R. Kumar, J. Raman Spectrosc. 42, 201 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Li, Y.H. Lin, B. Zhang, Y. Wang, C.W. Nan, J. Phys. C 114, 2906 (2010)Google Scholar
  44. 44.
    M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, Sens. Actuators B 190, 627 (2014)CrossRefGoogle Scholar
  45. 45.
    A.A. Al-Ghamdi, S. Al-Heniti, S.A. Khan, J. Lumin. 135, 295 (2013)CrossRefGoogle Scholar
  46. 46.
    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Phys. Chem. Chem. Phys. 19, 6878 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Cesaria, A.P. Caricato, G. Leggieri, M. Martino, G. Maruccio, Thin Solid Films 545, 592 (2013)CrossRefGoogle Scholar
  48. 48.
    M.P. de Jong, V.A. Dediu, C. Taliani, W.R. Salaneck, J. Appl. Phys. 94, 7292–7296 (2003)CrossRefGoogle Scholar
  49. 49.
    K. Takenaka, Y. Sawaki, R. Shiozaki, S. Sugai, Phys. Rev. B 62, 13864–13867 (2000)CrossRefGoogle Scholar
  50. 50.
    F.M. Smits, Bell Syst. Tech. J. 37, 711 (1958)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • F. B. Abdallah
    • 1
    Email author
  • A. Benali
    • 1
  • M. Triki
    • 1
  • E. Dhahri
    • 1
  • K. Nomenyo
    • 2
  • G. Lerondel
    • 2
  1. 1.Laboratoire de Physique Appliquée, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Lumière, nanomatériaux et nanotechnologie (L2n), Institut Charles Delaunay, CNRS UMR 6281Université de Technologie de TroyesTroyesFrance

Personalised recommendations