High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route

  • M. Sumathi
  • A. PrakasamEmail author
  • P. M. Anbarasan


In this paper, WO3/graphitic carbon nitride (g-C3N4) composite photocatalyst were successfully synthesized using microwave irradiation method followed by annealing process at 400 °C for 2 h. Powder X-ray diffraction, Raman and transmission electron microscope results suggest that both pure and composite samples showed hexagonal-phase WO3 (JCPDS Card No. 83-950) with particle size around in 30–40 nm. The optical band gap and specific surface area of the g-C3N4/WO3 composites were in the range of 2.55–2.78 eV and 45–87 m2/g, which is confirmed through UV–Vis diffuse reflectance (DRS) and N2 nitrogen absorption–desorption analysis. The photocatalytic activity of the photocatalysts was investigated by degradation of congo-red (CR) and malachite green (MG) under induced visible light irradiation. The results showed that WO3/g-C3N4 nanocomposite with a mass ratio of 1:3 (W1G3) showed the highest photocatalytic activity efficiency (93%) and high stability (only loss 3%) towards CR. The improved photocatalytic activity of the g-C3N4/WO3 composites is due to the synergistic effect of g-C3N4 and WO3 was considered to lead to improved photogenerated carrier separation. A possible degradation mechanism of CR over the g-C3N4/WO3 composite photocatalyst under visible light irradiation was also proposed.


  1. 1.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci.: Mater. Electron. 29, 1719 (2018)Google Scholar
  2. 2.
    M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim Pouran, J. Ind. Eng. Chem. 62, 1 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Chowdhury, R. Balasubramanian, Appl. Catal. B 160, 307 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Mousavi, A. Habibi-Yangjeh, Mater. Res. Bull. 105, 159 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi, Sep. Purif. Technol. 199, 64 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, J. Taiwan Inst. Chem. Eng. 87, 98 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 504, 697 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 482, 165 (2016)CrossRefGoogle Scholar
  9. 9.
    Z.G. Xiong, J.Z. Ma, W.J. Ng, T.D. Waite, X.S. Zhao, Water. Res. 45, 2095 (2011)CrossRefGoogle Scholar
  10. 10.
    Q.J. Xiang, B. Cheng, J.G. Yu, Angew. Chem. Int. Ed. 54, 11350 (2015)CrossRefGoogle Scholar
  11. 11.
    J.Q. Wen, J. Xie, X.B. Chen, X. Li, Appl. Surf. Sci. 391, 72 (2017)CrossRefGoogle Scholar
  12. 12.
    J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29, 1601694 (2017)CrossRefGoogle Scholar
  13. 13.
    H.J. Li, Y. Zhou, W.G. Tu, J.H. Ye, Z.G. Zou, Adv. Funct. Mater. 25, 998 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Morales, M. Cason, O. Aina, N.R. de Tacconi, K. Rajeshwar, J. Am. Chem. Soc. 130, 6318 (2008)CrossRefGoogle Scholar
  15. 15.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)CrossRefGoogle Scholar
  16. 16.
    S.G. Kumar, K.S.R.K. Rao, RSC. Adv. 5, 3306 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Yang, Y. Wen, D. Zeng, Q. Wang, R. Chen, W. Wang, B. Shan, J. Mater. Chem. A 2, 20770 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Song, C. Li, Y. Yin, J. Xiao, X. Zhang, M. Song, W. Dong, Vacuum 114, 13 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.G. Zhao, M. Miyauchi, Angew. Chem. 120, 7159 (2008)CrossRefGoogle Scholar
  20. 20.
    G.R. Bamwenda, H. Arakawa, Appl. Catal. A 210, 181 (2001)CrossRefGoogle Scholar
  21. 21.
    T. Arai, M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara, K. Sayama, Chem. Commun. 43, 5565 (2008)CrossRefGoogle Scholar
  22. 22.
    Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, J.Q. Xu, J. Phys. Chem. C 114, 2049 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Katsumata, Y. Oda, S. Kaneco, T. Suzuki, RSC Adv. 3, 5028 (2013)CrossRefGoogle Scholar
  24. 24.
    S.A.K. Leghari, S. Sajjad, F. Chen, J. Zhang, Chem. Eng. J. 166, 906 (2011)CrossRefGoogle Scholar
  25. 25.
    H. Widiyandari, A. Purwanto, R. Balgis, T. Ogi, K. Okuyama, Chem. Eng. J. 180, 323 (2012)CrossRefGoogle Scholar
  26. 26.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, J. Phys. Chem. C 111, 7574 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Xie, Z. Zhou, Y.W. Lian, Y.J. Hao, X.Y. Liu, M.X. Li, Y. Wei, Ceram. Int. 8, 12519 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 391, 202 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Karimi-Nazarabad, E.K. Goharshadi, Sol. Energy Mater. Sol. Cells 160, 484 (2017)CrossRefGoogle Scholar
  30. 30.
    K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, J. Hazard. Mater. 260, 475 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, J. Mater. Sci.: Mater. Electron. 29, 2341 (2018)Google Scholar
  32. 32.
    M. Karthik, M. Parthibavarman, A. Kumaresan, S. Prabhakaran, V. Hariharan, R. Poonguzhali, S. Sathishkumar, Mater. Sci.: Mater. Electron. 28, 6635 (2017)Google Scholar
  33. 33.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci.: Mater. Electron. 25, 730 (2014)Google Scholar
  34. 34.
    X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117, 9952 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Bai, K. Zhang, J. Sun, D. Zhang, R. Luo, D. Li, C. Liu, Sens. Actuators B 197, 142 (2014)CrossRefGoogle Scholar
  36. 36.
    C. Santato, M. Odziemkowski, M. Ulmann, A. Jan, J. Am. Chem. Soc. 123, 10639 (2001)CrossRefGoogle Scholar
  37. 37.
    L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Dalton Trans. 42, 8606 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Karthik, M. Parthibavarman, A. Kumaresan, G. Prabhakaran, V. Hariharan, R. Poonguzhali, S. Sathishkumar, J. Mater. Sci.: Mater. Electron. 28, 6635 (2017)Google Scholar
  39. 39.
    V. Hariharan, S. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar, C. Sekar, Talanta 85, 2166 (2011)CrossRefGoogle Scholar
  40. 40.
    A.S. Hammad, H.M. El-Bery, A.H. EL-Shazly, M.F. Elkad, Int. J. Electrochem. Sci. 13, 362 (2018)CrossRefGoogle Scholar
  41. 41.
    M. Arami, N.Y. Limaee, N.M. Mahmoodi, N. Salman, J. Hazard. Mater. 135, 171 (2006)CrossRefGoogle Scholar
  42. 42.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2014)CrossRefGoogle Scholar
  43. 43.
    S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Appl. Catal. B 150–151, 564 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsThiruvalluvar Government Arts CollegeRasipuramIndia
  2. 2.Nano and Hybrid Materials Laboratory, Department of PhysicsPeriyar UniversitySalemIndia

Personalised recommendations