Synthesis of phosphate-modified zeolite as a modifier in carbon paste electrode for nitrite electrochemical detection

  • Adamu Idris
  • Tawfik Saleh
  • Oki Muraza
  • Mohammed Sanhoob
  • Md. Abdul Aziz
  • Abdul-Rahman Al-BetarEmail author


In this work, template-free synthesis of phosphate mordenite zeolites was carried out. Post synthesis impregnation using phosphoric acid was applied to add phosphate group to zeolite framework, i.e. P-loading. Phosphate modification led to disruption of bridging hydroxyl and silanol groups as confirmed by FT-IR spectra. EDX spectra showed that the Si/Al ratio of the zeolite increases with the amount of P-loading and 27Al NMR revealed the formation of aluminophosphate on mordenite. The modified electrodes of phosphate mordenite zeolite were used for the electrocatalytic oxidation of nitrite, which was investigated by using square wave voltammetry. The effect of different electrolytes and pH values were also investigated and the calibration curve of nitrite oxidation at phosphate mordenite carbon paste electrodes showed a linear dependence.



The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals for funding this work through Project No. JF141005. The facilities provided by the Chemistry Department and the Center of Research Excellence in Nanotechnology at King Fahd University of Petroleum and Minerals are highly appreciated.


  1. 1.
    A. Wachter, Sodium nitrite as corrosion inhibitor for water. Ind. Eng. Chem. 37, 749–751 (1945)CrossRefGoogle Scholar
  2. 2.
    A. Rahim, L.S.S. Santos, S.B.A. Barros, L.T. Kubota, R. Landers, Y. Gushikem, Electrochemical detection of nitrite in meat and water samples using a mesoporous carbon ceramic SiO2/c electrode modified with in situ generated manganese(II) phthalocyanine. Electroanalysis 26, 541–547 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Fan, J. Wu, Construction of a carbon paste electrode based on ionic liquid for trace electrochemical detection of nitrite in food samples. Anal. Methods 5, 5146–5153 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Ianoul, T. Coleman, S.A. Asher, UV resonance Raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. Anal. Chem. 74, 1458–1461 (2002)CrossRefGoogle Scholar
  5. 5.
    D.C. Siu, A. Henshall, Ion chromatographic determination of nitrate and nitrite in meat products. J. Chromatogr. A 804, 157–160 (1998)CrossRefGoogle Scholar
  6. 6.
    E. Martínková, T. Křžek, P. Coufal, Determination of nitrites and nitrates in drinking water using capillary electrophoresis. Chem. Pap. 68, 1008–1014 (2014)CrossRefGoogle Scholar
  7. 7.
    E. Nagababu, J. Rifkind, Measurement of plasma nitrite by chemiluminescence. In: Free Radicals and Antioxidant Protocols, eds. by R.M. Uppu, S.N. Murthy, W.A. Pryor, N.L. Parinandi (Humana Press, New York, 2010), pp. 41–49Google Scholar
  8. 8.
    Y. Cui, C. Yang, W. Zeng, M. Oyama, W. Pu, J. Zhang, Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Anal. Sci. 23, 1421–1425 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Walcarius, P. Mariaulle, C. Louis, L. Lamberts, Amperometric detection of nonelectroactive cations in electrolyte-free flow systems at zeolite modified electrodes. Electroanalysis 11, 393–400 (1999)CrossRefGoogle Scholar
  10. 10.
    W. Xiong, M.D. Baker, Electrochemistry of zeolites on thickness shear mode oscillators. J. Phys. Chem. B 109, 13590–13596 (2005)CrossRefGoogle Scholar
  11. 11.
    B.R. Shaw, K.E. Creasy, Carbon composite electrodes containing alumina, layered double hydroxides, and zeolites. J. Electroanal. Chem. Interfacial Electrochem. 243, 209–217 (1988)CrossRefGoogle Scholar
  12. 12.
    L.M. Muresan, Zeolite-modified electrodes with analytical applications. Pure Appl. Chem. 83, 325–343 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Senaratne, J. Zhang, M.D. Baker, C.A. Bessel, D.R. Rolison, Zeolite-modified electrodes: intra-versus extrazeolite electron transfer. J. Phys. Chem. 100, 5849–5862 (1996)CrossRefGoogle Scholar
  14. 14.
    Y. Zheng, X. Li, P.K. Dutta, Exploitation of unique properties of zeolites in the development of gas sensors, Sensors (Basel), 12, 5170–5194 (2012)CrossRefGoogle Scholar
  15. 15.
    D.B. Lukyanov, T. Vazhnova, N. Cherkasov, J.L. Casci, J.J. Birtill, Insights into Brønsted acid sites in the zeolite mordenite. J. Phys. Chem. C 118, 23918–23929 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Corma, J. Mengual, P.J. Miguel, Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphtha for production of propene and ethene. Appl. Catal. A 421–422, 121–134 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Dyballa, E. Klemm, J. Weitkamp, M. Hunger, Effect of phosphate modification on the Brønsted acidity and methanol-to-olefin conversion activity of zeolite ZSM-5. Chem. Ing. Tec. 85, 1719–1725 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Li, H. Ma, H. Zhang, Q. Sun, W. Ying, Catalytic cracking of butene to propylene over modified HZSM-5 zeolites. Int. J. Chem. Nucl. Metall. Mater. Eng. 8, 590–593 (2014)Google Scholar
  19. 19.
    P. Zeng, Y. Liang, S. Ji, B. Shen, H. Liu, B. Wang, H. Zhao, M. Li, Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking. J. Energy Chem. 23, 193–200 (2014)CrossRefGoogle Scholar
  20. 20.
    N. Chen, T.F. Degnan Jr., C.M. Smith, Molecular Transport And Reaction in Zeolites: Design and Application of Shape Selective Catalysis (Wiley, New York, 1994)Google Scholar
  21. 21.
    H.E. van der Bij, L.R. Aramburo, B. Arstad, J.J. Dynes, J. Wang, B.M. Weckhuysen, Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study, ChemPhysChem 15, 283–292 (2014)CrossRefGoogle Scholar
  22. 22.
    M.M. Ardakani, Z. Akrami, H. Kazemian, H. Zare, Accumulation and voltammetric determination of cobalt at zeolite-modified electrodes. J. Anal. Chem. 63, 184–191 (2008)CrossRefGoogle Scholar
  23. 23.
    B.O. Hincapie, L.J. Garces, Q. Zhang, A. Sacco, S.L. Suib, Synthesis of mordenite nanocrystals. Microporous Mesoporous Mater. 67, 19–26 (2004)CrossRefGoogle Scholar
  24. 24.
    Y. Mao, Y. Zhou, H. Wen, J. Xie, W. Zhang, J. Wang, Morphology-controlled synthesis of large mordenite crystals, New J. Chem. 38, 3295–3301 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Patwardhan, Sol-gel synthesis of zeolites: effect of process parameters. Zeolites: synthesis, characterization and applications. Project 20-254-689 (2001)Google Scholar
  26. 26.
    J. Pinkas, Chemistry of silicates and aluminosilicates. Ceramics−Silikáty 49, 287–298 (2005)Google Scholar
  27. 27.
    J. Caro, M. Bülow, M. Derewinski, J. Haber, M. Hunger, J. Kärger, H. Pfeifer, W. Storek, B. Zibrowius, NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid. J. Catal. 124, 367–375 (1990)CrossRefGoogle Scholar
  28. 28.
    S. van Donk, J. Bitter, M. Versluijs-Helder, A. Verberckmoes, K. de Jong, Probing the micropore accessibility in mordenite crystals using diffusion and coking studies, in: NAM-18 (2003)Google Scholar
  29. 29.
    C.B. Ahlers, J.B. Talbot, Voltammetric behavior of zeolite-modified electrodes fabricated by electrophoretic deposition. Electrochim. Acta 45, 3379–3387 (2000)CrossRefGoogle Scholar
  30. 30.
    H.M.J. Li, H. Zhang, Q. Sun, W. Ying, Catalytic cracking of butene to propylene over modified HZSM-5 zeolites. Int. J. Chem. Nucl. Metall. Mater. Eng. 8, 604–608 (2014)Google Scholar
  31. 31.
    H.E. van der Bij, D. Cicmil, J. Wang, F. Meirer, F.M.F. de Groot, B.M. Weckhuysen, Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy. J. Am. Chem. Soc. 136, 17774–17787 (2014)CrossRefGoogle Scholar
  32. 32.
    T. Blasco, A. Corma, J. Martínez-Triguero, Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J. Catal. 237, 267–277 (2006)CrossRefGoogle Scholar
  33. 33.
    X.D. Peng, G.E. Parris, B.A. Toseland, P.J. Battavio, Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process, in Google Patents (1998)Google Scholar
  34. 34.
    M.I. Prodromidis, A.B. Florou, S.M. Tzouwara-Karayanni, M.I. Karayannis, The importance of surface coverage in the electrochemical study of chemically modified electrodes. Electroanalysis 12, 1498–1501 (2000)CrossRefGoogle Scholar
  35. 35.
    M. Bertotti, D. Pletcher, A study of nitrite oxidation at platinum microelectrodes. J. Braz. Chem. Soc. 8, 391–395 (1997)CrossRefGoogle Scholar
  36. 36.
    A. Marlinda, A. Pandikumar, N. Yusoff, N. Huang, H. Lim, Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim. Acta 182, 1113–1122 (2015)CrossRefGoogle Scholar
  37. 37.
    M.A. Kamyabi, F. Aghajanloo, Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium (IV)-4-methyl salophen. J. Electroanal. Chem. 614, 157–165 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Center of Research Excellence in NanotechnologyKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Chemical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations