Advertisement

Photoluminescence characteristics and energy transfer mechanism of Eu3+:NaY(WO4)2 microparticles

  • Zhongxiang Shi
  • Jing WangEmail author
  • Hao Jiang
  • Xin Guan
  • Yang Lu
  • Jun Shi
Review
  • 19 Downloads

Abstract

A series of red emitting phosphors Eu3+:NaY(WO4)2 were successfully synthesized through conventional hydrothermal reactions. Meanwhile, the photoluminescence characteristics of Eu3+:NaY(WO4)2 microparticles were detailedly discussed. The XRD measurements demonstrate that all products exhibited pure phase as NaY(WO4)2 and doping Eu3+ ions did evoke change the crystal parameters of matrix material. The SEM and TEM images show that the particle morphology was quasi-cubes with uniform appearance and the size was about 3–4 µm. Microparticles of Eu3+:NaY(WO4)2 can observe emissions located at 594 nm and 618 nm while excited by near-UV (249 nm) and near-IR (797 nm). And the energy transfer mechanism between Eu3+ was proved to be electric dipole–dipole (d–d) interaction as well as the critical distance was calculated to be 9.936 Å. What’s more, the phonon sideband spectra of Eu3+ ions was used to calculated Huang-Rays factor and analyze the phonon energy. Subsequently, for self-generated quenching process of Eu3+ occurs was well explained according to Auzel’s theoretical model. Besides, the CIE color coordinates of Eu3+:NaY(WO4)2 phosphors exhibited the ideal red chromaticity.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFB0310300), National Natural Science Foundation of China (51274052), Natural Science Foundation of Liaoning Province (201602134), Project supported by Department of Education Liaoning Province (JDL2016002).

References

  1. 1.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng. R 71, 1–34 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Annadurai, S.M.M. Kennedy, Synthesis and photoluminescence properties of Ba2CaZn2Si6O17: Eu3+ red phosphors for white LED applications. J. Lumin. 169, 690–694 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Zellmer, P. Riedel, A. Tünnermann, Visible upconversion lasers in praseodymium-ytterbium-doped fibers. Appl. Phys. B 69, 417–421 (1999)CrossRefGoogle Scholar
  4. 4.
    F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)CrossRefGoogle Scholar
  5. 5.
    S.V. Eliseeva, J.C.G. Bünzli, Rare earths: jewels for functional materials of the future. New J. Chem. 35, 1165–1176 (2011)CrossRefGoogle Scholar
  6. 6.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)CrossRefGoogle Scholar
  7. 7.
    L.J. Wang, W.Z. Wang, Y.L. Chen, L.Z. Yao, X. Zhao, H.L. Shi, M.S. Cao, Y.J. Liang, Heterogeneous p-n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution. ACS Appl. Mater. Inter. 10, 11652–11662 (2018)CrossRefGoogle Scholar
  8. 8.
    Y.L. Chen, L.J. Wang, W.Z. Wang, M.S. Cao, Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2 – xSe core-shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B-Environ. 209, 110–117 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Feng, W.L. Feng, M. Xia, K. Wang, H.G. Liu, D.S. Deng, X. Qin, W.K. Yao, W.T. Zhu, Co-precipitation synthesis, photoluminescence properties and theoretical calculations of MgWO4: Eu3+ phosphors. RSC Adv. 18, 14826–14831 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, H. Feng, X.G. Zhang, Microwave heating synthesis and luminescence of NaY(WO4)2: (Ho3+, Yb3+) phosphors. J. Mater. SCI-Mater. El. 26, 229–233 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Li, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, X. Xu, Synthesisand Luminescence properties of high brightness MLa(WO4)2: Eu3+ (M = Li, Na, K) and NaRE(WO4)2: Eu3+ (RE = Gd, Y, Lu) red phosphors. J. Lumin 143, 14–20 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Ming, F. Song, L. Yan, Spectroscopic study and green upconversion of Pr3+/Yb3+-codoped NaY(WO4)2 crystal, Opt. Comm. 286, 217–220 (2013)Google Scholar
  13. 13.
    C.S. Lim, Microwave-modified sol-gel process of NaY(WO4)2: Ho3+ /Yb3+ phosphors and the upconversion of their photoluminescence properties. Ceram. Int. 41, 2616–2621 (2014)Google Scholar
  14. 14.
    M.H. Li, L.L. Wang, W.G. Ran, Z.H. Deng, C.Y. Ren, J.S. Shi, Tunable emission of single-phased NaY(WO4)2: Sm3+ phosphor based on energy transfer. Ceram. Int. 43, 6751–6757 (2017)CrossRefGoogle Scholar
  15. 15.
    D.X. Sun, Hydrothermal synthesis of NaY(WO4)2: Tb3+ powders with assistance of surfactant and luminescence properties. J. Mater. Sci. 26, 6892–6896 (2015)Google Scholar
  16. 16.
    S.F. Gao, C.L. Sun, Y.X. Ji, Z.J. Zhu, Y. Wang, Z.Y. You, J.F. Li, Y.Q. Wang, J.H. Feng, S.Z. Lv, H.Y. Wang, C.Y. Tu, Photoluminescence properties and white emission of Dy3+, Tm3+: NaY(WO4)2 phosphors. Mater. Express 3, 127–134 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, T.T. Wang, Hydrothermal synthesis, multicolor tunable luminescence and energy transfer of Eu3+ or/and Tb3+ activated NaY(WO4)2 nanophosphors. J. Mater. Sci. Mater. El. 27, 10780–10790 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Du, L.L. Wang, J.S. Yu, Luminescence properties and energy transfer behavior of single-component NaY(WO4)2: Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes. J. Alloy. Compd. 673, 426–432 (2016)CrossRefGoogle Scholar
  19. 19.
    Y.D. Ren, Y.H. Liu, S.M. Tan, H.Y. Cui, Y.L. Wang, X.M. Li, R. Yang, X. Wei, H.W. Zhang, Y.D. Sun, Energy transfer rate and electron-phonon coupling properties in Eu3+-doped nanophosphors: energy transfer rate and electron-phonon coupling properties. Luminescence 32, 1–9 (2016)Google Scholar
  20. 20.
    Z. Wang, X.Y. Mi, L.J. Xie, X.Y. Pan, H.Y. Zhou, S.Y. Chen, X.Y. Zhang, Z.H. Bai, Preparation and luminescent properties of Ca9Y(PO4)7: Ce3+, Tb3+ nano-phosphors. Chinese J. Inorg. Chem. 32, 2136–2142 (2016)Google Scholar
  21. 21.
    X. Zhu, Z. Zhou, Photoluminescence and energy transfer mechanism of a novel tunable color phosphor Na2MgSiO4: Tb3+, Eu3+. J. Lumin. 188, 589–594 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Liu, Q.Y. Meng, W.J. Sun, Luminescent properties of Eu3+ doped NaY(WO4)2 nanophosphors prepared by molten salt method. J. Rare Earths 33, 915–921 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Li, W. Wei, S.Q. Guo, H.X. Su, X. Li, Y.X. Shang, Z.P. Yang, Q.L. Guo, G.S. Fu, Fabrication and luminescent properties of Tb3+ doped double molybdate phosphors. J. Electrochem. Soc. 159, D200–D203 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Tian, B.J. Chen, R.N. Hua, N.S. Yu, B.Q. Liu, J.S. Sun, L.H. Cheng, H.Y. Zhong, X.P. Li, J.S. Zhang, B.N. Tian, H. Zhong, Self-assembled 3D flower-shaped NaY(WO4)2: Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties. CrystEngComm. 14, 1760–1769 (2012)CrossRefGoogle Scholar
  25. 25.
    P. Du, L. Wang, J.S. Yu, Luminescence properties and energy transfer behavior of single-component NaY(WO4)2: Tm3+ / Dy3+ / Eu3+ phosphors for ultraviolet-excited white light-emitting diodes. J. Alloys Compd. 673, 426–432 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Wang, W.L. Guo, Y. Tian, P. Huang, Q.F. Shi, C.E. Cui, High luminescent brightness and thermal stability of red emitting Li3Ba2Y3(WO4)8: Eu3+ phosphor, Ceram. Int. 42, 13648–13653 (2016)Google Scholar
  27. 27.
    T. Liu, Q.Y. Meng, W.J. Sun, Electron-phonon coupling properties and energy transfer in NaY(WO4)2: Eu3+ phosphor. J. Alloy. Compd. 647, 830–836 (2015)CrossRefGoogle Scholar
  28. 28.
    Q.Y. Meng, Z.X. Liu, W.J. Sun, The experiments for obtaining Huang-Rhys factor and energy transfer rate of Gd2(WO4)3: Eu nanophosphor. Acta Phys. Sin. 62, 097801 (2013)Google Scholar
  29. 29.
    X. Ming, Q.Y. Meng, S.C. Lu, W.J. Sun, Crystallite morphology-dependent optical temperature-sensing properties of Eu3+-doped NaGd(WO4)2 phosphor. ChemistrySelect 2, 11860–11867 (2017)CrossRefGoogle Scholar
  30. 30.
    F.F. Hu, Z.M. Zhao, F.F. Chi, X.T. Wei, M. Yin, Structural characterization and temperature-dependent luminescence of CaF2: Tb3+/ Eu3+ glass ceramics. J. Rare Earths 35, 536–541 (2017)CrossRefGoogle Scholar
  31. 31.
    X.Y. Huang, Preparation and luminescence characteristics of monazite Eu3+: LaPO4 nanocrystals in NH4NO3 molten salt. Opt. Mater. 50, 81–86 (2015)CrossRefGoogle Scholar
  32. 32.
    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  33. 33.
    H.K. Zhu, M.H. Fang, Z.H. Huang, Y.G. Liu, K. Chen, X. Min, Y.J. Mao, M. Wang, Photoluminescence properties of Li2Mg2(WO4)3: Eu3+ red phosphor with high color purity for white LEDs applications. J. Lumin. 172, 180–184 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhongxiang Shi
    • 1
  • Jing Wang
    • 1
    Email author
  • Hao Jiang
    • 1
  • Xin Guan
    • 1
  • Yang Lu
    • 1
  • Jun Shi
    • 1
  1. 1.Liaoning Key Laboratory for Fabrication and Application of Superfine Inorganic PowdersDalian Jiaotong UniversityDalianChina

Personalised recommendations