Highly selective and sensitive O2 plasma treated sputtered thin film sensor for sub-ppm level NH3 detection at room temperature

  • Ajay BeniwalEmail author
  • Sunny


In this work, a SnO2 gas sensor with high specific surface area and hydroxylation property has shown enhanced sensitivity and selectivity for ammonia (NH3) detection at room temperature (RT). SnO2 thin film layer composed of nanograins of size ~ 8–24 nm is synthesized by dual step method including RF sputtering technique, followed by oxygen (O2) plasma treatment, intended to fabricate a high performance ammonia sensor operating at room temperature. The crystalline nature and surface morphology of the deposited layer have been investigated by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). A photoluminescence (PL) study is used to analyze the presence of oxygen vacancies in O2 plasma treated and untreated samples. The sensor is found suitable for extreme low ammonia concentration detection viz. 200 ppb with 20.2% response, with appreciable response/recovery time at RT. The sensing response of the fabricated sensor is analyzed in concentration range 200 ppb–500 ppm along with measuring the relative response (RR) of the sensor towards triethanolamine (TEA), 2-propanol, ethanol, acetone and methanol, in order to confirm the highly selective nature of the sensor towards target analyte. The response of the pure SnO2 (untreated O2 plasma) sensor is also investigated from RT to 250 °C, to identify the minimum (Tmin) and critical (Tc) operating temperature of the untreated sensor. Efforts in the present study are emphasized to achieve the response of the sputtered SnO2 thin film sensor at RT by significantly modifying the surface morphology through oxygen plasma treatment for selective ammonia detection.



The research work is sponsored by Indian Institute of Information Technology – Allahabad, under Seed Money Research Grant with File No. GRN - IIIT-A/DR(F&A)/Seed Money/2017/Int.85. The authors’ are grateful to Central Instrument Facility Centre (CIFC)—IIT (BHU) for providing the structural characterizations facilities. We are thankful to CSIR-NPL, New Delhi for providing PL facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based. Sens. Actuators B 3, 147–155 (1991)CrossRefGoogle Scholar
  2. 2.
    H. Ogawa, M. Nishikawa, A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448–4455 (1982)CrossRefGoogle Scholar
  3. 3.
    Y. Choe, New gas sensing mechanism for SnO2 thin-film gas sensors fabricated by using dual ion beam sputtering. Sens. Actuators B 77, 200–208 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors gas sensors. J. Appl. Phys. 95, 6374–6380 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Zhang, M. Liu, Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators B 69, 144–152 (2000)CrossRefGoogle Scholar
  6. 6.
    G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Arman, A. Ahmadpourian, Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO2 thin films. Results Phys. 7, 3349–3352 (2017)CrossRefGoogle Scholar
  8. 8.
    V. Kumar, V. Mishra, R. Dwivedi, R. Das, Effect of RF plasma on gridded gate Pt/SiO2/Si MOS sensor for detection of hydrogen. IEEE Sens. J. 16, 6205–6212 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Srivastava, R. Dwivedi, S. Srivastava, Effect of oxygen and hydrogen plasma treatment on the room temperature sensitivity of SnO2 gas sensors. Microelectron. J. 29, 833–838 (1998)CrossRefGoogle Scholar
  10. 10.
    J. Pan, R. Ganesan, H. Shen, S. Mathur, Plasma-modified SnO2 nanowires for enhanced gas sensing. J. Phys. Chem. C 114, 8245–8250 (2010)CrossRefGoogle Scholar
  11. 11.
    E.P. Stuckert, C.J. Miller, E.R. Fisher, The effect of Ar/O2 and H2O plasma treatment of SnO2 nanoparticles and nanowires on carbon monoxide and benzene detection. ACS Appl. Mater. Interfaces 9, 15733–15743 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, X.-L. He, J.-P. Li, J. Jia, X.-G. Gao, Enhanced gas sensing properties of aligned porous SnO2 nanofibers. Chin. Phys. Lett. 29(1–4), 70701 (2012)CrossRefGoogle Scholar
  13. 13.
    N.F.H. Aziz, R. Ritikos, S.A.A. Kamal, N.S.M. Hussain, R. Awang, Effect of RF power and annealing on chemical bonding and morphology of a-CNx thin films as humidity sensor. AIP Conf. Proc. 1571, 125–131 (2013)Google Scholar
  14. 14.
    S.G. Ansari, S.W. Gosavi, S.A. Gangal, R.N. Karekar, R.C. Aiyer, Characterization of SnO2-based H2 gas sensors fabricated by different deposition techniques. J. Mater. Sci. 8, 23–27 (1997)Google Scholar
  15. 15.
    M. Choudhary, V.N. Mishra, R. Dwivedi, Solid-state reaction synthesized Pd-doped tin oxide thick film sensor for detection of H2, CO, LPG and CH4. J. Mater. Sci. 24, 2824–2832 (2013)Google Scholar
  16. 16.
    M.N. Rumyantseva, V.V. Kovalenko, M. Gaskov, T. Pagnier, D. Machon, J. Arbiol, J.R. Morante, Nanocomposites SnO2/Fe2O3: wet chemical synthesis and nanostructure characterization. Sens. Actuators B 109, 64–74 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Xu, F. Sun, S. Yang, Z. Pan, J. Long, F. Gu, Fabrication of SnO2-reduced graphite oxide monolayer-ordered porous film gas sensor with tunable sensitivity through ultra-violet light irradiation. Sci. Rep. 5(8939), 1–8 (2015)Google Scholar
  18. 18.
    L.J. Bie, X.N. Yan, J. Yin, Y.Q. Duan, Z.H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens. Actuators B 126, 604–608 (2007)CrossRefGoogle Scholar
  19. 19.
    K.S. Venkatesh, K. Vijayalakshmi, K. Karthick, S.R. Krishnamoorthi, N.S. Palani, R. Ilangovan, Fabrication of room temperature H2 gas sensor using pure and La: ZnO with novel nanocorn morphology prepared by sol–gel dip coating method. J. Mater. Sci. Mater. Electron. 25, 4339–4347 (2014)CrossRefGoogle Scholar
  20. 20.
    R.K. Sonker, S.R. Sabhajeet, B.C. Yadav, TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J. Mater. Sci. Mater. Electron. 27, 11726–11732 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, L. Liu, C. Meng, Y. Zhou, Z. Gao, X. Li, X. Cao, L. Xu, W. Zhu, A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures. Sci. Rep. 6, 33092 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Haridas, V. Gupta, Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens. Actuators B 166–167, 156–164 (2012)CrossRefGoogle Scholar
  23. 23.
    S.R. Nalage, M.A. Chougule, S. Sen, V.B. Patil, Novel method for fabrication of NiO sensor for NO2 monitoring. J. Mater. Sci. Mater. Electron. 24, 368–375 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H. Song, Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens. Actuators B 147, 531–538 (2010)CrossRefGoogle Scholar
  25. 25.
    G. Neri, a Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B 127, 455–462 (2007)CrossRefGoogle Scholar
  26. 26.
    M.J. Kiani, J. Samadi, S.H. Yaghoubyan, High sensitivity of tin oxide sensor by sol–gel method. Int. J. Nano Devices Sens. Syst. 1, 46–52 (2012)Google Scholar
  27. 27.
    G. Tournier, C. Pijolat, R. Lalauze, B. Patissier, Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium. Sens. Actuators B 26, 24–28 (1995)CrossRefGoogle Scholar
  28. 28.
    L. Mei, Y. Chen, J. Ma, Gas sensing of SnO2 nanocrystals revisited: developing ultra-sensitive sensors for detecting the H2S leakage of biogas. Sci. Rep. 4(6028), 1–8 (2014)Google Scholar
  29. 29.
    J. Mazloom, F.E. Ghodsi, Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2 : Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 48, 1468–1476 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Ribeiro, P. Brogueira, G. Lavareda, C.N. Carvalho, A. Amaral, L. Santos, J. Morgado, U. Scherf, V.D.B. Bonifácio, Ultrasensitive microchip sensor based on boron-containing polyfluorene nanofilms. Biosens. Bioelectron. 26, 1662–1665 (2010)CrossRefGoogle Scholar
  31. 31.
    K.K. Makhija, A. Ray, R.M. Patel, U.B. Trivedi, H.N. Kapse, Indium oxide thin film based ammonia gas and ethanol vapour sensor. Bull. Mater. Sci. 28, 9–17 (2005)CrossRefGoogle Scholar
  32. 32.
    Y. Li, Mesoporous—Fe3O4/NiO composite microspheres with p–n heterojunction for a high-performance ethanol sensor. J. Mater. Sci. Mater. Electron. 29, 683–687 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Kaur, S.C. Roy, M.C. Bhatnagar, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature. Sens. Actuators B 123, 1090–1095 (2007)CrossRefGoogle Scholar
  34. 34.
    M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, SnO2 thin films for gas sensor prepared by r.f. reactive sputtering. Sens. Actuators B 25, 465–468 (1995)CrossRefGoogle Scholar
  35. 35.
    M. Abdullah, A. Aziz, Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films. Int. J. Hydrog Energy 35, 4428–4434 (2010)CrossRefGoogle Scholar
  36. 36.
    L. Liu, S. Li, X. Guo, L. Wang, L. Liu, X. Wang, The fabrication of In2O3 nanowire and nanotube by single nozzle electrospinning and their gas sensing property. J. Mater. Sci. Mater. Electron. 27, 5153–5157 (2016)CrossRefGoogle Scholar
  37. 37.
    J.T. McCann, D. Li, Y. Xia, Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem. 15, 735–738 (2005)CrossRefGoogle Scholar
  38. 38.
    R. Wilson, C. Simion, C. Blackman, C. Carmalt, A. Stanoiu, F. Di Maggio, J. Covington, The effect of film thickness on the gas sensing atomic layer deposition. Sensors 18(735), 1–13 (2018)Google Scholar
  39. 39.
    H. Xie, K. Wang, Z. Zhang, X. Zhao, F. Liu, H. Mu, Temperature and thickness dependence of the sensitivity of nitrogen dioxide graphene gas sensors modified by atomic layer deposited zinc oxide films. RSC Adv. 2, 28030–28037 (2015)CrossRefGoogle Scholar
  40. 40.
    D. Maurya, A. Sardarinejad, K. Alameh, Recent developments in R.F. magnetron sputtered thin films for pH. Sensing applications—an overview. Coatings 4, 756–771 (2014)CrossRefGoogle Scholar
  41. 41.
    A.S. Penfold, Magnetron sputtering. Phys. Technol. 67, 1–27 (1996)Google Scholar
  42. 42.
    M. Dwivedi, J. Bhargava, A. Sharma, V. Vyas, G. Eranna, CO sensor using ZnO thin film derived by RF magnetron sputtering technique. IEEE Sens. J. 14, 1577–1582 (2014)CrossRefGoogle Scholar
  43. 43.
    L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B 240, 408–416 (2017)CrossRefGoogle Scholar
  44. 44.
    C. Jin, H. Kim, S. Park, H.W. Kim, S. Lee, C. Lee, Enhanced ethanol gas sensing properties of SnO2 nanobelts functionalized with Au. Ceram. Int. 38, 6585–6590 (2012)CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators B 132, 67–73 (2008)CrossRefGoogle Scholar
  46. 46.
    R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017)CrossRefGoogle Scholar
  47. 47.
    T. Gui, L. Hao, J. Wang, L. Yuan, W. Jia, X. Dong, Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chin. Opt. Lett. 8, 134–136 (2010)Google Scholar
  48. 48.
    P. Gautam, A. Khare, S. Sharma, N.B. Singh, K.D. Mandal, Progress in natural science: materials international characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route. Prog. Nat. Sci. Mater. Int. 26, 567–571 (2017)CrossRefGoogle Scholar
  49. 49.
    R. Choudhary, R. Chauhan, Nitrogen ion implantation effects on the structural, optical and electrical properties of CdSe thin film. J. Mater. Sci. Mater. Electron. 29, 12595–12602 (2018)CrossRefGoogle Scholar
  50. 50.
    P. Muhammed Shafi, A. Chandra, Bose, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals AIP. Adv. 5(1–10), 057137 (2015)Google Scholar
  51. 51.
    J. Zeng, M. Hu, W. Wang, H. Chen, Y. Qin, NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuators B 161, 447–452 (2012)CrossRefGoogle Scholar
  52. 52.
    C. Jin, T. Yamazaki, Y. Shirai, T. Yoshizawa, Dependence of NO2 gas sensitivity of WO3 sputtered films on film density. Sens. Actuators B 474, 255–260 (2005)Google Scholar
  53. 53.
    Y. Liang., C. Lee, y Lo, Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method. RSC Adv. 7, 4724–4734 (2017)CrossRefGoogle Scholar
  54. 54.
    H. Faber, J. Hirschmann, M. Klaumünzer, B. Braunschweig, W. Peukert, M. Halik, Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors. ACS Appl. Mater. Interfaces 4, 1693–1696 (2012)CrossRefGoogle Scholar
  55. 55.
    L. Zhang, S. Wang, C. Lu, Detection of oxygen vacancies in oxides by defect-dependent cataluminescence. Anal. Chem. 87, 7313–7320 (2015)CrossRefGoogle Scholar
  56. 56.
    L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Photoluminescence studies on nanocrystalline tin oxide powder for optoelectronic devices. Am. J. Mater. Sci. 2, 6–10 (2012)CrossRefGoogle Scholar
  57. 57.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRefGoogle Scholar
  58. 58.
    C. Liewhiran, S. Phanichphant, Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles. Sensors 7, 185–201 (2007)CrossRefGoogle Scholar
  59. 59.
    G. Korotcenkov, S.-D. Han, B.K. Cho, V. Brinzari, Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric thin film gas sensor. Crit. Rev. Solid State Mater. Sci. 34, 1–17 (2009)CrossRefGoogle Scholar
  60. 60.
    D. Hanft, M. Richter, G. Beulertz, D. Kubinski, J. Visser, R. Moos, F. Materials, The influence of SO2 and the thickness of the sensitive layer on the performance of the Integrating NOx Sensor. In The 14th International Meeting on Chemical Sensors, IMCS 2012, 436–439 (2012)Google Scholar
  61. 61.
    X. Pan, X. Zhao, J. Chen, A. Bermak, Z. Fan, A fast-response/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response. Sens. Actuators B 206, 764–771 (2015)CrossRefGoogle Scholar
  62. 62.
    V.K. Tomer, R. Malik, K. Kailasam, Near-room-temperature ethanol detection using Ag-loaded mesoporous carbon nitrides. ACS Omega 2, 3658–3668 (2017)CrossRefGoogle Scholar
  63. 63.
    T. Suni, K. Henttinen, I. Suni, J. Mäkinen, Effects of plasma activation on hydrophilic bonding of Si and SiO2. J. Electrochem. Soc. 149, G348–G351 (2002)CrossRefGoogle Scholar
  64. 64.
    A. Talukder, J. Pokharel, M. Shrestha, Q. Fan, Improving electrical properties of sol–gel derived zinc oxide thin films by plasma treatment. J. Appl. Phys. 120, 155303 (2016)CrossRefGoogle Scholar
  65. 65.
    F. Walther, P. Davydovskaya, S. Zürcher, M. Kaiser, H. Herberg, A.M. Gigler, R.W. Stark, Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J. Micromech. Microeng. 17, 524–531 (2007)CrossRefGoogle Scholar
  66. 66.
    K. Maier, A. Helwig, G. Müller, P. Hille, M. Eickhoff, Effect of water vapor and surface morphology on the low temperature response of metal oxide semiconductor gas sensors. Materials 8, 6570–6588 (2015)CrossRefGoogle Scholar
  67. 67.
    A. Teeramongkonrasmee, M. Sriyudthsak, Methanol and ammonia sensing characteristics of sol-gel derived thin film gas sensor. Sens. Actuators B 66, 256–259 (2000)CrossRefGoogle Scholar
  68. 68.
    K. Govardhan, A. Nirmala Grace, Temperature optimized ammonia and ethanol sensing using Ce doped tin oxide thin films in a novel flow metric gas sensing chamber, J. Sens. (2016)Google Scholar
  69. 69.
    D. Zhang, Z. Wu, P. Li, X. Zong, G. Dong, Y. Zhang, Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens. Actuators B 258, 895–905 (2018)CrossRefGoogle Scholar
  70. 70.
    A. Kumar, A. Sanger, A. Kumar, R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636–77643 (2016)CrossRefGoogle Scholar
  71. 71.
    J.M. Tulliani, A. Cavalieri, S. Musso, E. Sardella, F. Geobaldo, Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B 152, 144–154 (2011)CrossRefGoogle Scholar
  72. 72.
    L.T.B. Van Hieu, Thuy, N.D. Chien, Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens. Actuators B 129, 888–895 (2008)CrossRefGoogle Scholar
  73. 73.
    Q. Nie, Z. Pang, H. Lu, Y. Cai, Q. Wei, Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature. Beilstein J. Nanotechnol. 7, 1312–1321 (2016)CrossRefGoogle Scholar
  74. 74.
    P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Efficient detection of SO2 gas using SnO2 based sensor loaded with metal oxide catalysts. Procedia Eng. 87, 1075–1078 (2014)CrossRefGoogle Scholar
  75. 75.
    N. Panahi, M.T. Hosseinnejad, M. Shirazi, M. Ghoranneviss, Optimization of gas sensing performance of nanocrystalline SnO2 thin films synthesized by magnetron sputtering. Chin. Phys. Lett. 33, 66802 (2016)CrossRefGoogle Scholar
  76. 76.
    A. Chowdhuri, Mechanism of trace level H2S gas sensing using Rf sputtered SnO2 thin films with cuo catalytic. Int. J. Smart Sens. Int. Syst. 2, 540–548 (2009)Google Scholar
  77. 77.
    O.V. Anisimov, N.K. Maksimova, E.V. Chernikov, E.Y. Sevastyanov, N.V. Sergeychenko, The effect of humidity and environment temperature on thin film Pt/SnO2:Sb gas sensors. In Siberian Conference, pp. 202–206 (2007)Google Scholar
  78. 78.
    M. Kaur, B.K. Dadhich, R. Singh, T. KailasaGanapathi, S. Bagwaiya, A.K. Bhattacharya, K.P. Debnath, Muthe, S.C. Gadkari, RF sputtered SnO2:NiO thin films as sub-ppm H2S sensor operable at room temperature. Sens. Actuators B 242, 389–403 (2017)CrossRefGoogle Scholar
  79. 79.
    N. Van Toan, N.V. Chien, N. Van Duy, D.D. Vuong, N.H. Lam, N.D. Hoa, N. Van Hieu, N.D. Chien, Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance. Appl. Surf. Sci. 324, 280–285 (2015)CrossRefGoogle Scholar
  80. 80.
    F. Abrinaei, M.T. Hosseinnejad, M. Shirazi, F. Shahgoli, Characterisation of nanostructured SnO2 thin films synthesised by magnetron sputtering and application in a carbon monoxide gas sensor. J Chem. Res. 40, 436–441 (2016)CrossRefGoogle Scholar
  81. 81.
    S. Zhang, P. Zhang, Y. Wang, Y. Ma, J. Zhong, X. Sun, Facile fabrication of a well-ordered porous cu-doped SnO2 thin film for H2S sensing. ACS Appl. Mater. Interfaces 6, 14975–14980 (2014)CrossRefGoogle Scholar
  82. 82.
    S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, Synthesis of SnO2–CuO heterojunction using electrospinning and application in detecting of CO. Sens. Actuators B 226, 96–103 (2016)CrossRefGoogle Scholar
  83. 83.
    H. Huang, Y.C. Lee, C.L. Chow, O.K. Tan, M.S. Tse, J. Guo, T. White, Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors. Sens. Actuators B 138, 201–206 (2009)CrossRefGoogle Scholar
  84. 84.
    D. Manno, G. Micocci, R. Rella, A. Serra, A. Taurino, A. Tepore, Titanium oxide thin films for NH3 monitoring: structural and physical characterizations. J. Appl. Phys. 82, 54–59 (1997)CrossRefGoogle Scholar
  85. 85.
    Y.C. Lee, O.K. Tan, H. Huang, M.S. Tse, Deposition and gas sensing properties of tin oxide thin films by inductively coupled plasma chemical vapor deposition. J. Electroceram. 16, 507–509 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics & Communication EngineeringIndian Institute of Information TechnologyAllahabadIndia

Personalised recommendations