Giant humidity responsiveness of WSe2 nanosheets for novel electronic listening and touchless positioning interface

  • Pratik PataniyaEmail author
  • G. K. Solanki
  • Chetan K. Zankat
  • Mohit Tannarana
  • K. D. Patel
  • V. M. Pathak


Since few years, sensing electronics based on metal oxide, carbon based materials, inorganic–organic hybrid materials have intensively exploited for biomedical applications. The performance of sensors most likely to be relies on high surface to volume ratio of primary sensing elements for better interactions. Monitoring dynamic response demands highly sensitive fast response sensors. Here we report for the first time, high performance sensors based on WSe2 nanosheets having extrinsic semiconducting behaviour as active resistive sensing material. The WSe2 nanosheets are synthesized by high yield sonochemical exfoliation technique and are characterized by TEM, absorption spectroscopy and Raman spectroscopy. Subsequently, WSe2 resistive sensor was fabricated and fast humidity sensing is demonstrated. The sensor was exploited for electronic listening towards human breathing, whistling and speaking. The novel touchless motion sensing applications are also demonstrated. The sensor shows excellent performance with better sensitivity and reproducibility due to optimized material properties and device configuration. Over all, the results advocate development of resistive sensors for biomedical as well as for intelligent touchless sensing applications.


  1. 1.
    C. Giaconia, A. Orioli, A.D. Gangi, Air quality and relative humidity in commercial aircrafts: an experimental investigation on short-haul domestic flights. Build. Environ. 67, 69–81 (2013)CrossRefGoogle Scholar
  2. 2.
    G.H. Zhou, J.H. Byun, Y. Oh, B.M. Jung, H.J. Cha, D.G. Seong, M.K. Um, S. Hyun, T.W. Chou, Highly sensitive wearable textile-based humidity sensors made of high-strength, single-walled carbon nanotubes/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 9, 4788–4797 (2017)CrossRefGoogle Scholar
  3. 3.
    E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135–156 (1995)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, R.W. Besant, C.J. Simonson, W. Shang, Application of humidity sensors and an interactive device. Sens. Actuators B 115, 93–101 (2006)CrossRefGoogle Scholar
  5. 5.
    D. Zhang, Y. Sun, P. Li, Y. Zheng, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interfaces 8, 14142–14149 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 129, 6070–6071 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Li, L. Hong, Y. Chen, H. Wang, X. Lu, M. Yang, Poly(4-vinylpyridine)/carbon black composite as humidity sensor. Sens. Actuators B 123, 554–559 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, G. Shen, W. Wang, X. Zhou, S. Guo, Individual nanocomposite sheets of chemically reduced grapheme oxide and poly (N-vinyl pyrrolidone): preparation and humidity sensing characteristics. J. Mater. Chem. 20, 10824–10828 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Bhattacharjee, H.B. Nemade, D. Bandyopadhyay, Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring. Biosens. Bioelectron. 94, 544–551 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Xia, L.C. Li, W. Li, T. Kou, D.M. Liu, Novel optical fiber humidity sensor based on a no-core fiber structure. Sens. Actuators A 190, 1–5 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Sun, K.R.G. Karthik, S.S. Pramana, L.H. Wong, J. Zhang, Y.Z. Huang, C.H. Sow, N. Mathews, S.G. Mhaisalkar, The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C. 2, 940–945 (2014)CrossRefGoogle Scholar
  13. 13.
    N. Li, X.D. Chen, X.P. Chen, X. Ding, X. Zhao, Ultra-high sensitivity humidity sensor based on MoS2/Ag composite films. IEEE Electron Device Lett. 38, 806–809 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Li, S. Liu, Y. Guo, Polyaniline-intercalated layered double hydroxides: synthesis and properties for humidity sensing. RSC Adv. 6, 63099–63106 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Wang, Y. Kang, L. Wang, H. Zhang, Y. Wang, Y. Wang, Organic/inorganic hybrid sensors: a review. Sens. Actuators B 8, 467–481 (2013)Google Scholar
  16. 16.
    X. Wei, Z. Zhang, M. Liu, C. Chen, G. Sun, C. Xue, H. Zhuang, B. Man, Annealing effect on the microstructure and photoluminescence of ZnO thin films. Mater. Chem. Phys. 101, 285–290 (2007)CrossRefGoogle Scholar
  17. 17.
    L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T. L. Ren, ACS Nano 11, 8790–8795 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano. 8, 5154–5163 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Gong et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 163–180 (2014)Google Scholar
  20. 20.
    Y. Qin et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano. 9, 8933–8941 (2015)CrossRefGoogle Scholar
  21. 21.
    C.U. Vyas, P. Pataniya, C.K. Zankat, V.M. Pathak, K.D. Patel, G.K. Solanki, Transient photo-response properties of CdTe thin films synthesized by screen printing technique. Mat. Sci.Sem. Procs. 71, (2017) 226–231 (2017)CrossRefGoogle Scholar
  22. 22.
    D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879 (2013)CrossRefGoogle Scholar
  23. 23.
    K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single- and multilayer MoS2 film based field-effect transistors for sensing NO at room temperature. Small. 8, 63 (2012)CrossRefGoogle Scholar
  25. 25.
    N. Huo, S. Yang, Z. Wei, S.S. Li, J.B. Xia, J. Li, Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014)CrossRefGoogle Scholar
  26. 26.
    K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, J. He, Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property. Nanotech. 24, 465705 (2013)CrossRefGoogle Scholar
  27. 27.
    C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, Tuning of photodetection properties of V0.5Sn0.5Se2 ternary alloy. Mater. Res. Express. 5, 056207 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Patel, P. Pataniya, S. Narayan, C.K. Sumesh, V.M. Pathak, G.K. Solanki, K.D. Patel, P.K. Jha, Investigation of structural, electrical and optical properties of SbXW1–XSe2 single crystals. Mat. Sci.Sem. Proc. 81, 108 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Jia, J. Bai, Z. Maab, X. Jiang, BSA-exfoliated WSe2 nanosheets as a photoregulated carrier for synergistic photodynamic/photothermal therapy. J. Mater. Chem. B. 5, 269–278 (2017)CrossRefGoogle Scholar
  31. 31.
    G.K. Solanki, P. Pataniya, C.K. Sumesh, K.D. Patel, V.M. Pathak, Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique. Journal of Crystal Growth. 441, 101–106 (2016)CrossRefGoogle Scholar
  32. 32.
    P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, C.K. Sumesh, Crystal growth, characterization and photo detection properties of 2H–V0.75W0.25Se2 ternary alloy with 1T–VSe2 secondary phase. Mater. Res. Express. 4, 106306 (2017)CrossRefGoogle Scholar
  33. 33.
    V. Solanki, S.B. Krupanidhi, K.K. Nanda, Sequential elemental dealloying approach for the fabrication of porous metal oxides and chemiresistive sensors Thereof for electronic listening. ACS Appl. Mater. Interfaces. 9, 41428–41434 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Yin, K. Yu, Z. Zhang, M. Zeng, L. Lou, Z. Zhu, Humidity sensing properties of flower-like VO2(B) and VO2(M). Nanostruct. Electroanal. 23, 1752–1758 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Zhang, K. Yu, Z. Zhu, D. Jiang, Synthesis and humidity Sensing properties of feather-like ZnO nanostructures with macroscale in shape. Sens. Actuators A 143, 245–250 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Pokhrel, K.S. Nagaraja, Electrical and Humidity sensing properties of chromium(III) oxide-tungsten(VI) oxide composites. Sens. Actuators B 92, 144–150 (2003)CrossRefGoogle Scholar
  37. 37.
    A.S. Pawbake, R. Waykar, D.J. Late, S.R. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Inter-faces. 8, 3359–3365 (2016)CrossRefGoogle Scholar
  38. 38.
    Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005)CrossRefGoogle Scholar
  39. 39.
    A.S. Pawbake, A. Date, S.R. Jadkar, D.J. Late, Temperature Dependent raman spectroscopy and sensing behavior of few layer SnSe2 Nanosheets. Chem. Select. 1, 5380–5387 (2016)Google Scholar
  40. 40.
    G. Peng et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nano. 4, 669–673 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Righettoni, A. Tricoli, S.E. Pratsinis, Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)CrossRefGoogle Scholar
  42. 42.
    U. Tisch, H. Haick, Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing.. Rev. Chem. Eng. 26, 171 (2010)CrossRefGoogle Scholar
  43. 43.
    U. Mogera, A.A. Sagade, S.J. George, G.U. Kulkarni, Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Sci. Rep. 4, 4103 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations