The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance

  • Cuiping Li
  • Yaqing Ge
  • Xiaohui Jiang
  • Zhiming Zhang
  • Liangmin Yu


To obtain outstanding electromagnetic microwave absorption (EMWA) properties, the rambutan-like dielectric–magnetic C@NiCo2O4 material was successfully prepared by a simple hydrothermal method, followed by a carbonization process. Benefiting from the unique rambutan-like structure, the dielectric–magnetic C@NiCo2O4 composites showed excellent microwave attenuation ability: minimum reflection loss (RLmin) value of − 39.0 dB at 17.4 GHz and wide effective absorption bandwidth (EAB, reflection loss exceeding − 10 dB) of 4.16 GHz (> 13.84 GHz) with a matching thickness of only 1.5 mm, which were much better than those of pure C and NiCo2O4. The superior properties might be due to multiple synergistic effects: magnetic loss (NiCo2O4), dielectric loss (C, NiCo2O4), the multi-reflections, scattering and interface relaxation resulting from mesoporous rambutan-like structures, and the dipole polarization to get good electromagnetic matching and high attenuation efficiency.



This project was supported by the National Natural Science Foundation of China (No. 41476059) and China Postdoctoral Science Foundation (No. 2016M600557).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

10854_2018_592_MOESM1_ESM.docx (87 kb)
Supplementary material 1 (DOCX 87 KB)


  1. 1.
    Y. Ding, L. Zhang, Q.L. Liao, Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9(7), 2018–2025 (2016)CrossRefGoogle Scholar
  2. 2.
    Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7(47), 26226–26234 (2015)CrossRefGoogle Scholar
  3. 3.
    X.F. Liu, Y.X. Chen, X.R. Cui, M. Zeng, R.H. Yu, G.S. Wang, Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 3(23), 12197–12204 (2015)CrossRefGoogle Scholar
  4. 4.
    C.P. Li, Y.Q. Ge, X.H. Jiang, Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption. Ceram. Int. 44(16), 19171–19183 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Wang, J.C. Shu, X.M. He, M. Zhang, X.X. Wang, C. Gao, J. Yuan, M.S. Cao, Green approach to conductive PEDOT:PSS decorating magnetic graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 6, 14017–14025 (2018)CrossRefGoogle Scholar
  6. 6.
    G.J.H. Melvin, Q.Q. Ni, Y. Suzuki, Microwave absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J. Mater. Sci. 49(14), 5199–5207 (2014)CrossRefGoogle Scholar
  7. 7.
    P.B. Liu, Y. Huang, L. Wang, Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide-Co3O4 nanocomposites. J. Alloys Compd. 573(19), 151–156 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Zheng, Z.Q. Liu, X.S. Zhao, One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23(16), 165601–165610 (2012)CrossRefGoogle Scholar
  9. 9.
    J.T. Feng, Y.C. Wang, Y.H. Hou, L.C. Li, Tunable design of yolk–shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption. Inorg Chem Front 4, 935–945 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, Y. Fu, X. Wu, Synthesis of hierarchical coreshell NiFe2O4@MnO2 composite microspheres decorated graphene nanosheet for enhanced microwave absorption performance. Ceram. Int. 43(14), 11367–11375 (2017)CrossRefGoogle Scholar
  11. 11.
    J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, A facile fabrication and highly tunable microwave absorption of 3D flowerlike Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018)CrossRefGoogle Scholar
  12. 12.
    J.Q. Zhu, X.J. Zhang, S.W. Wang, G.S. Wang, P.G. Yin, Enhanced microwave absorption material of ternary nanocomposites based on MnFe2O4@SiO2, polyaniline and polyvinylidene fluoride. Rsc Advances 6, 88104–88109 (2016)CrossRefGoogle Scholar
  13. 13.
    Z.W. Shi, H. Lu, Q. Liu, K.M. Deng, L.Y. Xu, R.J. Zou, J.Q. Hu, Y. Bando, D. Golberg, L. Li, NiCoO nanostructures as a promising alternative for NiO photocathodes in p-type dye-sensitized solar cells with high efficiency. Energy Technol. 2(6), 517–521 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, F. Liu, J.P. Cheng, X.B. Zhang, Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl. Mater. Interfaces 7(32), 17630–17640 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave Assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699–22712 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Silwal, L. Miao, I. Stern, X.L. Zhou, J. Hu, D.H. Kim, Metal insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4. Appl. Phys. Lett. 100(3), 118 (2016)Google Scholar
  17. 17.
    R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han, H. Ahn, Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J. Alloys Compd. 509(23), 6677–6682 (2011)CrossRefGoogle Scholar
  18. 18.
    X.F. Liu, C.C. Hao, H. Jiang, Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J Mater Chem C 5(15), 3770–3778 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Zhan, Y.L. Yao, C.F. Zhang, C.J. Li, Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure. J. Alloys Compd. 585(6), 240–244 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Zhou, F. Lu, B. Chen, X. Zhu, X. Shen, W. Xia, H. He, X. Zeng, Thickness dependent complex permittivity and microwave absorption of NiCo2O4 nanoflakes. Mater. Lett. 159, 498–501 (2015)CrossRefGoogle Scholar
  21. 21.
    F.L. Wang, J.R. Liu, J. Kong, Z.J. Zhang, X.Z. Wang, M. Itoh, K.I. Machida, Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 21(12), 4314–4320 (2011)CrossRefGoogle Scholar
  22. 22.
    H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Xia, Y. Xiong, B. Li, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew. Chem. Int. Ed. 38(4), 335–344 (2009)Google Scholar
  24. 24.
    B. Zhao, G. Shao, B. Fan, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A. 3, 10345–10352 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Shen, C. Qian, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014)CrossRefGoogle Scholar
  26. 26.
    G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, Z.D. Wang, H.J. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)CrossRefGoogle Scholar
  27. 27.
    N.D. Wu, X.G. Liu, C.Y. Zhao, Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628–634 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Lü, Y.T. Wang, H.L. Li, MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7(24), 13604–13611 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Qiang, Y.C. Du, Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016)CrossRefGoogle Scholar
  30. 30.
    Q.L. Liu, D. Zhang, T.X. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93(1), 401 (2008)Google Scholar
  31. 31.
    N.N. Wu, H.L. Lv, J.R. Liu, Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18(46), 31542–31550 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Lv, G.B. Ji, H.Q. Zhang, M. Li, Z.Z. Zuo, Y. Zhao, B.S. Zhang, D.M. Tang, Y.W. Du, CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci. Rep. 5, 18249–18259 (2015)CrossRefGoogle Scholar
  33. 33.
    M.H. Xu, W. Zhong, Z.H. Wang, Highly stable FeCo/carbon composites: magnetic properties and microwave response. Phys. E. 52(3), 14–20 (2013)CrossRefGoogle Scholar
  34. 34.
    G.M. Li, L.C. Wang, W. Li, CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent. Phys. Chem. Chem. Phys. 16(24), 12385–12392 (2014)CrossRefGoogle Scholar
  35. 35.
    H.Y. Lin, H. Zhu, H.F. Guo, Microwave-absorbing properties of Co-filled carbon nanotubes. Mater. Res. Bull. 43(10), 2697–2702 (2008)CrossRefGoogle Scholar
  36. 36.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater. Interfaces 4(12), 6949–6956 (2012)CrossRefGoogle Scholar
  37. 37.
    Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. 29, 17122–17136 (2018)Google Scholar
  38. 38.
    Y.C. Yin, X.F. Liu, X.J. Wei, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016)CrossRefGoogle Scholar
  39. 39.
    Q. He, T. Yuan, X. Zhang, Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J. Phys. Chem. C 118(42), 24784–24796 (2014)CrossRefGoogle Scholar
  40. 40.
    H.J. Wu, G.L. Wu, L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  41. 41.
    D. Lan, M. Qin, R.S. Yang, S. Chen, H.J. Wu, Y.C. Fan, Q.H. Fu, F.L. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)CrossRefGoogle Scholar
  42. 42.
    C.Y. Liang, Y.J. Gou, L.N. Wu, Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J. Phys. Chem. C 120(24), 12967–12973 (2016)CrossRefGoogle Scholar
  43. 43.
    F. Nanni, P. Travaglia, M. Valentini, Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 69(3), 485–490 (2009)CrossRefGoogle Scholar
  44. 44.
    F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3(27), 14358–14369 (2015)CrossRefGoogle Scholar
  45. 45.
    H.J. Wu, S.H. Qu, K.J. Lin, Y.C. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)CrossRefGoogle Scholar
  46. 46.
    Y.N. Li, Y. Zhao, X.Y. Lu, Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4 @polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Research 9(7), 2034–2045 (2016)CrossRefGoogle Scholar
  47. 47.
    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, Laminated magnetic graphene with enhanced electro-magnetic wave absorption properties. J Mater Chem C 1(4), 765–777 (2012)CrossRefGoogle Scholar
  48. 48.
    M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W. Hines, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80(23), 4404–4410 (2002)CrossRefGoogle Scholar
  49. 49.
    W.Z. Li, T. Qiu, L.L. Wang, S.S. Ren, J.R. Zhang, L.F. He, X.Y. Li, Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres. ACS Appl. Mater. Interfaces 5(3), 883–891 (2013)CrossRefGoogle Scholar
  50. 50.
    G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012)CrossRefGoogle Scholar
  51. 51.
    M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, Y. Chen, Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91(20), 203110–203113 (2007)CrossRefGoogle Scholar
  52. 52.
    R.F. Zhuo, Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. J. Phys. D 41(18), 185405–185413 (2008)CrossRefGoogle Scholar
  53. 53.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)CrossRefGoogle Scholar
  54. 54.
    M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015)CrossRefGoogle Scholar
  55. 55.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 14, 1800987–1800994 (2018)CrossRefGoogle Scholar
  56. 56.
    B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)CrossRefGoogle Scholar
  57. 57.
    X.Y. Fang, M.S. Cao, X.L. Shi, Z.L. Hou, W.L. Song, J. Yuan, Microwave responses and general model of nanotetraneedle ZnO: integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. J. Appl. Phys. 107, 054304 (2010)CrossRefGoogle Scholar
  58. 58.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Chemistry Theory and TechnologyOcean University of China, Ministry of EducationQingdaoChina
  2. 2.Pilot National Laboratory for Marine Science and TechnologyOpen Studio for Marine Corrosionand ProtectionQingdaoChina
  3. 3.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoChina

Personalised recommendations