Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19322–19335 | Cite as

Facile hydrothermal assisted synthesis of time dependent Cu2S thin films for efficient photoelectrochemical application

  • Satish S. Patil
  • Chaitali S. Bagade
  • Monika P. Joshi
  • Suvarta D. Kharade
  • Kishorkumar V. Khot
  • Sawanta S. Mali
  • Chang K. Hong
  • Popatrao N. Bhosale
Article
  • 70 Downloads

Abstract

In present investigation, we have successfully synthesized nanocrystalline Cu2S thin films at different deposition time via single step hydrothermal route. The synthesized Cu2S thin films characterized for their optostructural, morphological, compositional and photoelecrochemical properties as function of deposition time. Thickness of deposited Cu2S thin films increases with increase in deposition time. The optical studies revealed that band gap of Cu2S thin films decrease with increase in deposition time. Structural study confirm that Cu2S thin films are nanocrystalline in nature with pure hexagonal crystal structure. Crystallite size were increases with increase in deposition time. Raman spectrum shows the presence of sharp band at 472 cm−1 confirms the formation of pure phase hexagonal Cu2S thin film. Scanning electron microscopy micrographs of Cu2S thin films demonstrate that significant change in surface morphology. The high resolution transmission electron microscopy and selected area emission diffraction study indicate that nanocrystalline Cu2S thin films formation. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy show the presence of elements and preferred valence state with stoichiometric composition of the Cu2S thin films. electron impedance spectroscopy reveals that charge transfer resistance (Rct) decreases with increase in deposition time. From J–V measurements, it was found that, Cu2S thin films shows maximum conversion efficiency is 0.27% for film after deposition of 6 h.

Notes

Acknowledgements

One of the author, SSP is very much thankful to Department of Science and Technology (DST), New Delhi for providing DST-INSPIRE fellowship for financial support (Registration No. IF160712). This work is also supported by Basic science and research programme through the National Science Research Foundation of Korea (NRF) funded by Ministry of Education (NRF = 2009–0094055).

References

  1. 1.
    A.P. Alivisatos, Science 271, 933–937 (1996)CrossRefGoogle Scholar
  2. 2.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)CrossRefGoogle Scholar
  3. 3.
    H.H. Kung, M.C. Kung, Catal. Today 97, 219–224 (2004)CrossRefGoogle Scholar
  4. 4.
    I. Grozdavon, J. Solid State Chem. 114, 469–475 (1995)CrossRefGoogle Scholar
  5. 5.
    S. Wang, S. Yang, Chem. Mater. 13, 4794–4799 (2001)CrossRefGoogle Scholar
  6. 6.
    M.C. Brelle, C.L. Torres, J.C. Mcnulty, R.K. Mehra, J.Z. Zhang, Pure Appl. Chem. 72, 101–117 (2013)CrossRefGoogle Scholar
  7. 7.
    W. Liang, M.H. Whangbo, Solid State Commun. 85, 405–408 (1993)CrossRefGoogle Scholar
  8. 8.
    8T.Z. Gang, Z.Q. An, G.X. Zhi, Z.J. Fu, W.W. Yong, L.A. Ping, J. Alloys Compd. 695, 1778–1785 (2017)CrossRefGoogle Scholar
  9. 9.
    J.S. Cruz, S.A.M. Hernandez, F.P. Delgado, O.Z. Angel, R.C. Perez, G.T. Delgado, Int. J. Photoenergy 2013,178017 (2013)Google Scholar
  10. 10.
    J.S. Chung, S.J. Sohn, J. Power Sources 108, 226–231 (2002)CrossRefGoogle Scholar
  11. 11.
    A.A. Sagade, R. Sharma, Sens. Actuators B 133, 135–143 (2008)CrossRefGoogle Scholar
  12. 12.
    M.V. Haritha, Y.S. Lee, M. Gopi, H.J. Kim, RSC Adv. 6, 45809–45818 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Xin, K.W. Li, H. Wang, Appl. Surf. Sci. 256, 1436–1442 (2009)CrossRefGoogle Scholar
  14. 14.
    X.L. Liu, Y.J. Zhu, Mater. Lett. 65, 1089–1091 (2011)CrossRefGoogle Scholar
  15. 15.
    T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo, J.S. Huang, Mater. Lett. 62, 4529–4531 (2008)CrossRefGoogle Scholar
  16. 16.
    P. Roy, S.K. Srivasta, Mater. Lett. 61, 1693–1697 (2007)CrossRefGoogle Scholar
  17. 17.
    Z. Yao, X. Zhu, C. Wu, X. Zhang, Y. Xie, Cryst. Growth Des. 7, 1256–1261 (2007)CrossRefGoogle Scholar
  18. 18.
    Z.H. Yang, D.P. Zhang, W.X. Zhang, M. Chen, J. Phys. Chem. Solids 70, 840–846 (2009)CrossRefGoogle Scholar
  19. 19.
    X.L. Yu, H.L.W. Chan, Y. Wang, C.B. Cao, Microporous Mesoporous Mater. 118, 423–426 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Vedel, P. Cowache, M. Soubeyrand, Sol. Energy Mater. 10, 25–34 (1994)CrossRefGoogle Scholar
  21. 21.
    H.S.S. Ranjel, A.C. Castillo, J.F.H. Paz, J.R.F. Mancilla, H.C. Montes, P.E.G. Casillas, C.A.M. Perez, C.A.R. Gonzalez, Chalcogenide Lett. 12, 381–387 (2015)Google Scholar
  22. 22.
    D. Selle, J. Maege, Phys. Status Solidi. 30, 153–155 (1968)CrossRefGoogle Scholar
  23. 23.
    C. Gautier, G. Breton, M. Nouaoura, M. Cambon, S. Charar, M. Averous, Thin Solid Films 315, 118–122 (1998)CrossRefGoogle Scholar
  24. 24.
    L. Reijnen, B. Meester, F.d. Lange, J. Schoonman, A. Goossens, Chem. Mater. 17, 2724–2728 (2005)CrossRefGoogle Scholar
  25. 25.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, J. Sci. Res. Dev. 13, 95–99 (2015)Google Scholar
  26. 26.
    B. Bharathi, S. Thanikaikarasan, P. Kollu, P.V. Chandrasekar, K. Sankaranarayanan, X.S. Shajan, J. Mater. Sci. Mater. Electron. 25, 5338–5344 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Podder, R. Kobayashi, M. Ichimura, Thin Solid Films 472, 71–75 (2005)CrossRefGoogle Scholar
  28. 28.
    A.D. Dhondge, S.R. Gosavi, N.M. Gosavi, C.P. Sawant, A.M. Patil, A.R. Shelke, N.G. Deshpande, World J. Condens. Matter Phys. 5, 1–9 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Li, J. Ma, L. Zhou, Y. Li, C. Zo, Optik Int. J. Light Electron Opt. 126, 4971–4973 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Hao, P. Dong, Q. Luo, J. Li, J. Lou, H. Lin, Energy Environ. Sci. 6, 2003 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Siol, H. Strater, R. Bruggemann, J. Brotz, G. Bauer, A. Klein, W. Jargermann, J. Phys. D 46, 495112 (2013)CrossRefGoogle Scholar
  32. 32.
    S.A. Phaltane, S.A. Vanalakar., T.S. Bhat, P.S. Patil, S.D. Sartale. L.D. Kadam, J. Mater. Sci. Mater. Electron. 28, 8186–8191 (2017)CrossRefGoogle Scholar
  33. 33.
    S.A. Vanalakar, G.L. Agwane, M.G. Gang, P.S. Patil, J.H. Kim, J.Y. Kim, Phys. Status Solidi C 12, 500–503 (2015)CrossRefGoogle Scholar
  34. 34.
    S.A. Vanalakar, P.S. Patil, J.H. Kim, Sol. Energy Mater. Sol. Cells 182, 204–219 (2018)CrossRefGoogle Scholar
  35. 35.
    S.H. Pawar, P.N. Bhosale, Mater. Chem. Phys. 11, 461–479 (1994)CrossRefGoogle Scholar
  36. 36.
    W. Ostwald, L. der, Allg. Chem. 2, 1 (1896)Google Scholar
  37. 37.
    R.M. Mane, S.R. Mane, R.R. Kharade, P.N. Bhosale, J. Alloys Compd. 491, 321–324 (2010)CrossRefGoogle Scholar
  38. 38.
    B.D. Ajalkar, R.K. Mane, B.D. Sarwade, P.N. Bhosale, Sol. Energy Mater. Sol. Cells 81, 101–112 (2004)CrossRefGoogle Scholar
  39. 39.
    K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, New J. Chem. 38, 5964–5974 (2014)CrossRefGoogle Scholar
  40. 40.
    M.M. Salunkhe, K.V. Khot, P.S. Patil, T.M. Bhave, P.N. Bhosale, New J. Chem. 39, 3405–3416 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Pelleg, E. Elish, Vac. Surf. Films 20, 754–761 (2002)CrossRefGoogle Scholar
  42. 42.
    R. Herberholz, M.J. Carter, Sol. Energy Mater. Sol. Cells. 44, 357–366 (1996)CrossRefGoogle Scholar
  43. 43.
    X. Shuai, W. Shen, Z. Hou, S. Ke, C. Xu, C. Jiang, Nanoscale Res. Lett. 9, 513 (2014)CrossRefGoogle Scholar
  44. 44.
    C.S. Bagade, S.S. Mali, V.B. Ghanwat, K.V. Khot, P.B. Patil, S.D. Kharade, R.M. Mane, N.D. Desai, C.K. Hong, P.S. Patil, P.N. Bhosale, RSC Adv. 5, 55658–55668 (2015)CrossRefGoogle Scholar
  45. 45.
    X. Meng, M. Sun, Y. Hu, M. Yin, Z.L. Yu, N. Yu, H. Li, T. Shu, J. Alloys Compd. 735, 2142–2147 (2017)CrossRefGoogle Scholar
  46. 46.
    S.K. Jagadale, K.V. Khot, C.S. Bagade, R.M. Mane, V.B. Ghanwat, R.K. Mane, S.S. Mali, C.K. Hong, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 28, 2984–2995 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24, 811–820 (1996)CrossRefGoogle Scholar
  48. 48.
    S.A. Vanalakar, S.S. Mali, R.C. Pawar, N.L. Tarwal, A.V. Moholkar, A. Jin, J.H. Kim, P.S. Patil, J.A. Kim, Y. Kwon. Electrochim. Acta 56, 2762–2768 (2011)CrossRefGoogle Scholar
  49. 49.
    S.A. Vanalkar, P.S. Patil, Chemical synthesis of Cds, Zno and Cds sensitized Zno thin films and their characterization for photo-electrochemical solar cells (Shivaji University, Kolhapur, 2010). http://handle.net/10603/4064
  50. 50.
    G. Hodes, Nature 285, 29–30 (1980)CrossRefGoogle Scholar
  51. 51.
    M. Ali, P. Ramirez, S. Mafe, R. Neumann, W. Ensinger, ACS Nano 3, 603–608 (2009)CrossRefGoogle Scholar
  52. 52.
    S.S. Mali, B.M. Patil, C.A. Betty, P.N. Bhosale, Y.W. Ohd, S.R. Jadkar, R.S. Devanf, Y. Ron Maf, P.S. Patil, Electrochim. Acta 66, 216–221 (2012)CrossRefGoogle Scholar
  53. 53.
    A.D. Savariraj, K.K. Viswanathan, K. Prabakar, Electrochim. Acta 149, 364–369 (2014)CrossRefGoogle Scholar
  54. 54.
    V.V. Kondalkar, S.S. Mali, R.R. Kharade, K.V. Khot, P.B. Patil, R.M. Mane, S. Choudhury, P.S. Patil, C.K. Hong, J.H. Kim, P.N. Bhosale, Dalton Trans. 44, 2788–2800 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Satish S. Patil
    • 1
  • Chaitali S. Bagade
    • 1
  • Monika P. Joshi
    • 1
  • Suvarta D. Kharade
    • 1
  • Kishorkumar V. Khot
    • 2
  • Sawanta S. Mali
    • 3
  • Chang K. Hong
    • 3
  • Popatrao N. Bhosale
    • 1
  1. 1.Materials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Department of General Engineering and ScienceSharad Institute of Technology, College of EngineeringIchalkaranjiIndia
  3. 3.School of Applied Chemical EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations