Advertisement

Synthesis of hierarchical Mn3O4 microsphere composed of ultrathin nanosheets and its excellent long-term cycling performance for lithium-ion batteries

  • Lihong Xu
  • Xi Chen
  • Lingxing ZengEmail author
  • Renpin Liu
  • Cheng Zheng
  • Qingrong QianEmail author
  • Qinghua Chen
Article
  • 24 Downloads

Abstract

In the present work, the hierarchical Mn3O4 microsphere assembled by two-dimensional ultrathin nanosheets was initially synthesized successfully through ethanol thermal reduction method. When used as the anode materials for lithium ion batteries, the hierarchical Mn3O4 microsphere exhibited large reversible capacity (640 mAh g−1 at 100 mA g−1 for 100 cycles), high rate capability (391 mAh g−1 at 2 A g−1) and outstanding long-time cycling stability (324 mAh g−1 at 2 A g−1 after 1300 cycles). The excellent performances might be related with their hierarchical microsphere structure and two-dimensional nanostructure.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. NSFC 51502036, U1505241 and 21407025), the Outstanding Youth Research Training Program of University of Fujian Province and Natural Science Foundation of Fujian Province (Grant No. 2016J05116).

Supplementary material

10854_2018_584_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1143 KB)

References

  1. 1.
    M. Armand, J.-M. Tarascon, Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Li, Z.X. Wang, L.Q. Chen, X.J. Huang, Adv. Mater. 21, 4593–4607 (2009)CrossRefGoogle Scholar
  3. 3.
    Y.G. Wang, Y.R. Wang, E. Hosono, K.X. Wang, H.S. Zhou, Angew. Chem. Int. Ed. 47, 7461–7465 (2008)CrossRefGoogle Scholar
  4. 4.
    G.Q. Zhang, L. Yu, H.B. Wu, H.E. Hoster, X.W. Lou, Adv. Mater. 24, 4609–4613 (2012)CrossRefGoogle Scholar
  5. 5.
    Y.R. Liu, B.C. Zhang, J.K. Feng, S.L. Xiong, RSC Adv. 5, 26863–26871 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.F. Deng, L.N. Wan, Y. Xie, X.S. Qin, G.H. Chen, RSC Adv. 4, 23914–23935 (2014)CrossRefGoogle Scholar
  7. 7.
    H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc. 132, 13978–13980 (2010)CrossRefGoogle Scholar
  8. 8.
    L.W. Su, X.B. Wu, J.P. Hei, L.B. Wang, Y.H. Wang, Part. Part. Syst. Charact. 32, 721–727 (2015)CrossRefGoogle Scholar
  9. 9.
    S.Z. Huang, Y. Cai, J. Jin, J. Liu, Y. Li, Y. Yu, H.E. Wang, L.H. Chen, B.L. Su, Nano Energy 12, 833–844 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Gu, J. Yue, L.J. Li, H.T. Xue, J. Yang, X.B. Zhao, Electrochim. Acta 184, 250–256 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Yue, X. Gu, L. Chen, N.N. Wang, X.L. Jiang, H.Y. Xu, J. Yang, Y.T. Qian, J. Mater. Chem. A 2, 17421–17426 (2014)CrossRefGoogle Scholar
  12. 12.
    G.Q. Jian, Y.H. Xu, L.C. Lai, C.S. Wang, M.R. Zachariah, J. Mater. Chem. A 2, 4627–4632 (2014)CrossRefGoogle Scholar
  13. 13.
    S.M. Guo, G.X. Lu, S. Qiu, J.R. Liu, X.Z. Wang, C.Z. He, H.G. Wei, X.R. Yan, Z.H. Guo, Nano Energy 9, 41–49 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Zhou, D.Y. Zhao, X.W. Lou, Adv. Mater. 24, 745–748 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Su, Y.F. Xu, S.C. Feng, Z.G. Wu, X.P. Sun, C.H. Shen, J.Q. Wang, J.T. Li, L. Huang, S.G. Sun, ACS Appl. Mater. Interfaces 7, 8488–8494 (2015)CrossRefGoogle Scholar
  16. 16.
    L.Q. Mai, X.C. Tian, X. Xu, L. Chang, L. Xu, Chem. Rev. 114, 11828–11862 (2014)CrossRefGoogle Scholar
  17. 17.
    Z.Y. Wang, L. Zhou, X.W. Lou, Adv. Mater. 24, 1903–1911 (2012)CrossRefGoogle Scholar
  18. 18.
    X.P. Fang, X. Lu, X.W. Guo, Y. Mao, Y.S. Hu, J.Z. Wang, Z.X. Wang, F. Wu, H.K. Liu, L.Q. Chen, Electrochem. Commun. 12, 1520–1523 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Z. Nie, A. Pan, Y. Zhang, X. Kong, T. Zhu, S. Liang, G. Cao, J. Mater. Chem. A 6, 6792–6799 (2018)CrossRefGoogle Scholar
  20. 20.
    Y.M. Chen, Z. Li, X.W. Lou, Angew. Chem. Int. Ed. 54, 10521–10524 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Zeng, R. Liu, L. Han, F. Luo, X. Chen, J. Wang, Q. Qian, Q. Chen, M. Wei, Chem. Eur. J. 24, 4841–4848 (2018)CrossRefGoogle Scholar
  22. 22.
    L.X. Zeng, X. Chen, R.P. Liu, L.X. Lin, C. Zheng, L.H. Xu, F.Q. Luo, Q.R. Qian, Q.H. Chen, M.D. Wei, J. Mater. Chem. A 5, 22997–23005 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Zeng, C. Zheng, C. Deng, X. Ding, M. Wei, ACS Appl. Mater. Interfaces 5, 2182–2187 (2013)CrossRefGoogle Scholar
  24. 24.
    M.J. Jing, J.F. Wang, X.B. Ji, J. Mater. Chem. A 3, 16824–16830 (2015)CrossRefGoogle Scholar
  25. 25.
    S.Z. Huang, J. Jin, Y. Cai, Y. Li, H.Y. Tan, H.E. Wang, G. Van Tendeloo, B.L. Su, Nanoscale 6, 6819–6827 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Wang, D. Jin, R. Zhou, X. Li, X. Liu, C. Shen, K. Xie, B. Li, F. Kang, B. Wei, ACS Nano 10, 6227–6234 (2016)CrossRefGoogle Scholar
  27. 27.
    D. Zhang, G. Li, J. Fan, B. Li, L. Li, Chem. Eur. J. 24, 9632–9638 (2018)CrossRefGoogle Scholar
  28. 28.
    B. Sambandam, V. Soundharrajan, J. Song, S. Kim, J. Jo, D. Tung, S. Kim, V. Mathew, J. Kim, Inorg. Chem. Front. 3, 1609–1615 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Wang, L. Yin, D. Xiang, Y. Qi, ACS Appl. Mater. Interfaces 4, 1636–1642 (2012)CrossRefGoogle Scholar
  30. 30.
    Y. Zhuang, Z. Ma, Y. Deng, X. Song, X. Zuo, X. Xiao, J. Nan. Electrochim. Acta 245, 448–455 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Gao, M.A. Lowe, H.D. Abruna, Chem. Mater. 23, 3223–3227 (2011)CrossRefGoogle Scholar
  32. 32.
    Z. Jiang, K. Huang, D. Yang, S. Wang, H. Zhong, C. Jiang, RSC Adv. 7, 8264–8271 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Bai, N. Fan, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, J. Mater. Chem. A 1, 10985–10990 (2013)CrossRefGoogle Scholar
  34. 34.
    S.K. Park, C.Y. Seong, S. Yoo, Y. Piao, Energy 99, 266–273 (2016)CrossRefGoogle Scholar
  35. 35.
    I. Nam, N.D. Kim, G.P. Kim, J. Park, J. Yi, J. Power Sources 244, 56–62 (2013)CrossRefGoogle Scholar
  36. 36.
    L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto, G. Yang, J. Mater. Chem. A 1, 8385–8397 (2013)Google Scholar
  37. 37.
    R. Lin, W. Yue, F. Niu, J. Ma, Electrochim. Acta 205, 85–94 (2016)CrossRefGoogle Scholar
  38. 38.
    Y.R. Ren, J.W. Wang, X.B. Huang, B. Yang, J.N. Ding, RSC Adv. 5, 59208–59217 (2015)CrossRefGoogle Scholar
  39. 39.
    I.A. Ayhan, Q. Li, P. Meduri, H. Oh, G.R. Bhimanapati, J.A. Robinson, Q. Wang, RSC Adv. 6, 33022–33030 (2016)CrossRefGoogle Scholar
  40. 40.
    Z. Liu, R. Guo, F. Li, M. Zheng, B. Wang, T. Li, Y. Luo, L. Meng, J. Alloys Compd. 762, 643–652 (2018)CrossRefGoogle Scholar
  41. 41.
    T. Yuan, Y. Jiang, Q. Wang, B. Pan, M. Yan, ChemElectroChem 4, 565–569 (2017)CrossRefGoogle Scholar
  42. 42.
    T. Yuan, Y. Jiang, W. Sun, B. Xiang, Y. Li, M. Yan, B. Xu, S.X. Dou, Adv. Funct. Mater. 26, 2198–2206 (2016)CrossRefGoogle Scholar
  43. 43.
    P. Wang, M. Gao, H. Pan, J. Zhang, C. Liang, J.H. Wang, P. Zhou, Y.F. Liu, J. Power Sources 239, 466–474 (2013)CrossRefGoogle Scholar
  44. 44.
    P. Zhou, X. Wang, W. Guan, D. Zhang, L.B. Fang, Y.Z. Jiang, ACS Appl. Mater. Interfaces 9, 6979–6987 (2017)CrossRefGoogle Scholar
  45. 45.
    I. Moriguchi, Chem. Lett. 43, 740–745 (2014)CrossRefGoogle Scholar
  46. 46.
    K. Lv, Y. Zhang, D. Zhang, W. Ren, L. Sun, J. Mater. Sci.: Mater. Electron. 28, 1–9 (2017)Google Scholar
  47. 47.
    L.X. Zeng, X.X. Huang, X. Chen, C. Zheng, Q.R. Qian, Q.H. Chen, M.D. Wei, ACS Appl. Mater. Interfaces 8, 232–239 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment Science and EngineeringFujian Normal UniversityFuzhouChina
  2. 2.Institute of Advanced Energy MaterialsFuzhou UniversityFuzhouChina
  3. 3.Fujian Key Laboratory of Pollution Control & Resource ReuseFuzhouChina
  4. 4.Fuqing Branch of Fujian Normal UniversityFuqingChina

Personalised recommendations