‘Green’ prepare SnO2 nanofibers by shaddock peels: application for detection of volatile organic compound gases

  • Rongjun Zhao
  • Zhezhe Wang
  • Tong Zou
  • Zidong Wang
  • Xinixn Xing
  • Yue Yang
  • Yude WangEmail author


One-dimensional fiber-like SnO2 nanomaterials (SnO2 nanofibers) were prepared by ‘green’ preparation approach that using shaddock peels as bio-templates via a facile hydrothermal method for the first time. The microstructure, morphology, chemical states and specific surface areas were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption, respectively. Results indicating the as-synthesized SnO2 are fiber-like structures and composed of numerous nanoparticles, and with large specific surface areas (36.50 m2 g−1). The XPS spectra confirms that the existence of adsorbed oxygen (Oads) on the surface of product, which may lead to the response of gas sensor. The gas-sensing properties of the sensor based on SnO2 nanofibers for volatile organic compounds (VOCs) were investigated, such as methanol, ethanol, isopropanol, acetone, formaldehyde and n-butanol. The sensor showed high gas response, low detection limit and fast response towards various VOCs gases at the optimal operating temperature of 260 °C. These results demonstrated the potential of using as-synthesized SnO2 nanofibers for VOCs gases detection. In addition, the possible formation mechanism and the gas-sensing mechanism were also discussed.



This work was supported by the Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology (Grant No. 2017FA025), National Natural Science Foundation of China (Nos. 61761047 and 41876055) and Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province.

Supplementary material

10854_2018_582_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4783 KB)


  1. 1.
    S.J. Deng, N. Chen, D.Y. Deng, Y.X. Li, X.X. Xing, Y.D. Wang, Cream. Int. 41, 11004 (2015)CrossRefGoogle Scholar
  2. 2.
    G.H. Qin, F. Gao, Q.P. Jiang, Y.H. Li, Y.J. Liu, L. Luo, K. Zhao, H.Y. Zhao, Phys. Chem. Chem. Phys. 18, 5537 (2016)CrossRefGoogle Scholar
  3. 3.
    S.J. Deng, X. Liu, N. Chen, D.Y. Deng, X.C. Xiao, Y.D. Wang, Sens. Actuators B 223, 615 (2016)CrossRefGoogle Scholar
  4. 4.
    R.K. Mishra, A. Kushwaha, P.P. Sahay, Rsc Adv. 4, 3904 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Chen, L. Huang, Y.J. Lin, L.M. Sai, Q.H. Chang, W.Z. Shi, Q. Chen, Sens. Actuators B 255, 1482 (2018)CrossRefGoogle Scholar
  6. 6.
    D.D. Lian, B. Shi, R.R. Dai, X.H. Jia, X.Y. Wu, J. Nanoparticle Res. 19, 401 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Mandal, R. Aaryashree, S. Singh, Mukherjee, IEEE Sens. J. 18, 2659 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Mahapatra, A.B. Cohen, Y. Vaknin, A. Henning, J. Hayon, K. Shimanovich, H. Greenspan, Y. Rosenwarks, ACS Sens. 3, 709 (2018)CrossRefGoogle Scholar
  9. 9.
    W.C. Geng, S.B. Ge, X.W. He, S. Zhang, J.W. Gu, X.Y. Lai, H. Wang, Q.Y. Zhang, ACS Appl. Mater. Interfaces 10, 13702 (2018)CrossRefGoogle Scholar
  10. 10.
    N. Chen, Y.X. Li, D.Y. Deng, X. Liu, X.X. Xing, X.C. Xiao, Y.D. Wang, Sens. Actuators B 238, 491 (2017)CrossRefGoogle Scholar
  11. 11.
    J.W. Ma, H.Q. Fan, H.L. Tian, X.H. Ren, C. Wang, S. Gao, W.J. Wang, Sens. Actuators B 262, 17 (2018)CrossRefGoogle Scholar
  12. 12.
    C.J. Dong, L.H. Wang, G. Chen, X.C. Xiao, I. Djerdj, Y.D. Wang, J. Mater. Chem. C 4, 985 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Amutha, S. Amirthapandian, A.K. Prasad, B.K. Panigrahi, P. Thangadurai, J. Nanoparticle Res. 17, 289 (2015)CrossRefGoogle Scholar
  14. 14.
    C.H. Zhao, H.M. Gong, W.Z. Lan, R. Ramachandran, H. Xu, S. Liu, F. Wang, Sens. Actuators B 258, 492 (2018)CrossRefGoogle Scholar
  15. 15.
    X.X. Xu, J. Zhuang, X. Wang, J. Am. Chem. Soc. 130, 12527 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. 16, 84 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Song, H.L. Su, J. Han, W.M. Lau, W.J. Moon, D. Zhang, J. Phys. Chem. C 116, 10274 (2012)CrossRefGoogle Scholar
  18. 18.
    M.H. Li, W.P. Yan, H.C. Zhu, S.F. Xia, H. Wu, Z.A. Tang, J. Mater. Sci. 26, 9561 (2015)Google Scholar
  19. 19.
    G.G. Xu, X.Y. Zhang, H.Z. Cui, W.M. Cheng, Z.H. Zhang, J.X. Ding, X.Y. Zhan, J. Wu, Mater. Lett. 172, 137 (2016)CrossRefGoogle Scholar
  20. 20.
    G.G. Xu, X.Y. Zhang, H.Z. Cui, Z.W. Chen, J.X. Ding, X.Y. Zhan, Powder Technol. 302, 283 (2016)CrossRefGoogle Scholar
  21. 21.
    S.M. Zhu, D. Zhang, J.J. Gu, J.Q. Xu, J.P. Dong, J.L. Li, J. Nanoparticle Res. 12, 1389 (2010)CrossRefGoogle Scholar
  22. 22.
    F. Song, H.L. Su, J. Han, J.Q. Xu, D. Zhang, Sens. Actuators B 145, 39 (2010)CrossRefGoogle Scholar
  23. 23.
    C.J. Dong, X. Liu, B.Q. Han, S.J. Deng, X.C. Xiao, Y.D. Wang, Sens. Actuators B 224, 193 (2016)CrossRefGoogle Scholar
  24. 24.
    J.L. Lv, M. Yang, M. Hideo, Chem. Phys. Lett. 669, 161 (2017)CrossRefGoogle Scholar
  25. 25.
    V.K.K. Tangirala, H.G. Pozos, V.R. Lugo, M.D.L.L. Olvera, Sensors 17, 1011 (2017)CrossRefGoogle Scholar
  26. 26.
    R.J. Zhao, Z.Z. Wang, Y. Yang, X.X. Xing, T. Zou, Z.D. Wang, Y.D. Wang, J. Phys. Chem. Solids 120, 173 (2018)CrossRefGoogle Scholar
  27. 27.
    D.D. Wei, Z.S. Huang, L.W. Wang, X.H. Chuai, S.M. Zhang, G.Y. Lu, Sens. Actuators B 255, 1211 (2018)CrossRefGoogle Scholar
  28. 28.
    L. Zhu, W. Zeng, H. Ye, Y.Q. Li, Mater. Res. Bull. 100, 259 (2018)CrossRefGoogle Scholar
  29. 29.
    C.P. Gu, X.J. Xu, J.R. Huang, W.Z. Wang, Y.F. Sun, J.H. Liu, Sens. Actuators B 174, 31 (2012)CrossRefGoogle Scholar
  30. 30.
    B.Q. Han, X. Liu, X.X. Xing, N. Chen, X.C. Xiao, S.Y. Liu, Y.D. Wang, Sens. Actuators B 237, 423 (2016)CrossRefGoogle Scholar
  31. 31.
    X.J. Yang, V. Salles, Y.V. Kaneti, M.S. Liu, M. Maillard, C. Journet, X.C. Jiang, A. Brioude, Sens. Actuators B 220, 1112 (2015)CrossRefGoogle Scholar
  32. 32.
    H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Poloju, N. Jayababu, E. Manikandan, M.V.R. Reddy, J. Mater. Chem. C 5, 2662 (2017)CrossRefGoogle Scholar
  34. 34.
    L. Xiao, S.M. Shu, S.T. Liu, Sens. Actuators B 221, 120 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Chen. Z.L. Zhou, Y.D. Wang, Sens. Actuators B 135, 219 (2008)CrossRefGoogle Scholar
  36. 36.
    Y.D. Wang, T. Chen, Q.Y. Mu, G.F. Wang, Scripta Mater. 61, 935 (2009)CrossRefGoogle Scholar
  37. 37.
    C.J. Dong, X.X. Xing, N. Chen, X. Liu, Y.D. Wang, Sens. Actuators B 230, 1 (2016)CrossRefGoogle Scholar
  38. 38.
    Y.X. Li, N. Chen, D.Y. Deng, X.X. Xing, X.C. Xiao, Y.D. Wang, Sens. Actuators B 238, 264 (2017)CrossRefGoogle Scholar
  39. 39.
    X.X. Xing, Y.X. Li, D.Y. Deng, N. Chen, X. Liu, X.C. Xiao, Y.D. Wang, RSC Adv. 6, 101304 (2016)CrossRefGoogle Scholar
  40. 40.
    Y.D. Wang, I. Djerdj, M. Antonietti, B. Smarsly, Small 4, 1556 (2008)Google Scholar
  41. 41.
    D. Hu, B.Q. Han, R. Han, S.J. Deng, Y. Wang, Q. Li, Y.D. Wang, New J. Chem. 38, 2443 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Liu, N. Chen, B.Q. Han, X.C. Xiao, G. Chen, I. Djerdj, Y.D. Wang, Nanoscale 7, 14872 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Department of PhysicsYunnan UniversityKunmingPeople’s Republic of China
  3. 3.Key Lab of Quantum Information of Yunnan ProvinceYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations