Effect of calcination on structural, morphological, magnetic and electrochemical properties of mesoporous Ni2P2O7 microplates

  • A. Karaphun
  • S. Maensiri
  • E. Swatsitang


The NH4NiPO4·H2O (NNPO) precursor powder was prepared by the hydrothermal method at 200 °C for 8 h. In the study of calcination effect on the structural, morphological, magnetic and electrochemical properties of mesoporous Ni2P2O7 microplates (NPOs), NNPO was calcined at different temperatures of 500, 600 and 700 °C each for 1 h and 3 h in argon atmosphere. XRD analysis confirmed the orthorhombic structure of NNPO with space group Pmnm(59), whereas all NPOs possessed the monoclinic crystal structure with space group B21/c(14). The calculated average crystallite size of NPOs (DWH) by the Williamson–Hall equation was in a nanoscale with the increase of size due to the increasing calcination temperature. Images of all NPOs obtained by SEM and TEM techniques showed a thin plate-like morphology with mesoporous nature of pore size ranging from 2 to 16 nm. XANES results indicated the oxidation state of 2 + for Ni cation in all NPOs samples. The magnetic properties of all NPOs studied at room temperature using VSM techniques indicated a weak ferromagnetic behavior with the enhancement of coercive field (Hc) and unsaturated magnetization (M), suggesting to originate from the increase of particle size due to the increase of calcination temperature. Interestingly, electrochemical properties of active NPOs electrodes studied by CV, GCD and EIS tests in 3 M KOH electrolyte revealed the maximum specific capacitance (Csc) of 905.687 F g−1 at a current density 1 A g−1 with a good cycling stability 90.80% retention after 1000 cycle test in a cell, having NPO6_1 h (obtained by calcination NNPO at 600 °C for 1 h) as active electrode.



This work was financially supported by the Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Department of Physics, Faculty of Science, Khon Kaen University, Thailand. The Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, Thailand was also acknowledged for the co-financial support.


  1. 1.
    M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139(2), 72–79 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Zhang, Y. Bao, S. Ma, L. Liu, X. Shi, Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrode. J. Mater. Chem. A 5, 7474–7481 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Minakshi, D. Mitchell, R. Jones, F. Alenazey, T. Watcharatharapong, S. Chakraborty, R. Ahuja, Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices. Nanoscale 8, 11291 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Mao, C. Guan, X. Huang, Q. Ke, Y. Zhang, J. Wang, 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim. Acta 196, 653–660 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Zang, C. Sun, Z. Dai, J. Yang, X. Dong, Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors. J. Alloys Compd. 691, 144–150 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Wang, X. Zhang, X. Zhang, D. Chen, Q. Lin, A novel Ni(OH)2/graphene nanosheets electrode with high capacitance and excellent cycling stability for pseudocapacitors. J. Power Sources 333, 156–163 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Pang, Y.-Z. Zhang, Z. Run, W.-Y. Lai, W. Huang, Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. Nano Energy 17, 339–347 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Chen, N. Zhang, Y. He, B. Liang, R. Ma, X. Liu, Controllable fabrication of amorphous Co-Ni pyrophosphates for tuning electrochemical performance in supercapacitors. ACS Appl. Mater. Interfaces 8, 23114–23121 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, M. Hao, Y. Wang, Y. Sha, L. Su, Effect of electrolyte concentration on the capacitive properties of NiO electrode for supercapacitors. J. Solid. State. Electrochem. 20, 81–85 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, Highly porous graphitic carbon and Ni2P2O7 for high performance aqueous hybrid supercapacitor. J. Mater. Chem. A 3, 21553 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Akkoç, S. Demirel, E. Öz, S. Altın, A. Bayri, V. Dorcet, T. Roisnel, C. Bruneau, I. Özdemir, S. Yaşar, Cationic versus anionic Pt complex: the performance analysis of a hybrid-capacitor, DFT calculation and electrochemical properties. Polyhedron 157, 434–441 (2019)CrossRefGoogle Scholar
  12. 12.
    Complex, Investigation of potential hybrid capacitor property of chelated N-heterocyclic carbene ruthenium(II). J. Organomet. Chem. 866, 214–222 (2018)CrossRefGoogle Scholar
  13. 13.
    V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Toupin, T. Brousse, D. Blanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRefGoogle Scholar
  15. 15.
    K. Chen, S. Song, K. Li, D. Xue, Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. Cryst. Eng. Commun. 15, 10367–10373 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Altin, A. Bayri, S. Demirel, E. Oz, E. Altin, S. Avci, Structural, magnetic, electrical, and electrochemical properties of Sr–Co–Ru–O: a hybrid-capacitor application. J. Am. Ceram. Soc. 101(10), 4572–4581 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Tang, Z. Liu, W. Guo, T. Chen, Y. Qiao, S. Mu, Y. Zhao, F. Gao, Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim. Acta 190, 118–125 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Z. Guo, Honeycomb-like NiCo2O4 films assembled from interconnected porous nanoflakes for supercapacitor. Mater. Chem. Phys. 171, 208–215 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Wei, C. Cheng, S. Wang, Y. Xu, J. Wang, H. Pang, Sodium-doped mesoporous Ni2P2O7 hexagonal tablets for high performance flexible all-solid-state hybrid supercapacitors. Chem. Asian. J. 10, 1731–1737 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Chen, L.-L. Shao, Z.-Y. Yuan, Q.-S. Jing, K.-J. Huang, Z.-Y. Huang, X.-H. Zhao, G.-D. Zou, A general strategy for controlled synthesis of NixPy/carbon and its evaluation as a counter electrode material in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 9(21), 17949–17960 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Feng, Y.O. Yang, L. Peng, H. Qin, H. Wang, Y. Wang, Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance. J. Mater. Chem. A 3, 9587–9594 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Senthilkumar, G. Ananya, P. Ashok, S. Ramaprabhu, Synthesis of carbon coated nano-Na4Ni3(PO4)2P2O7 as a novel cathode material for hybrid supercapacitors. Electrochim. Acta 169, 447–455 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Wu, P. Guo, R. Mi, X. Liu, H. Zhang, J. Mei, H. Liu, W.-M. Laua, L.-M. Liu, Ultrathin NiCo2O4 nanosheets grown on three dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high performance supercapacitors. J. Mater. Chem. A 3, 15331 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Onoda, K. Kojima, H. Nariai, Additional effects of rare earth elements on formation and properties of some transition metal pyrophosphates. J. Alloys Compd. 408–412, 568–572 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Karaphun, P. Chirawatkul, S. Maensiri, E. Swatsitang, Influence of calcination temperature on the structural, morphological, optical, magnetic and electrochemical properties of Cu2P2O7 nanocrystals. J. Sol-Gel. Sci. Technol. 88, 407–421 (2018)CrossRefGoogle Scholar
  27. 27.
    B. Boonchom, C. Danvirutai, A simple synthesis and thermal decomposition kinetics of MnHPO4·H2O rod-like microparticles obtained by spontaneous precipitation route. J. Optoelectron. Adv. Mater. 10, 492–499 (2008)Google Scholar
  28. 28.
    H. Onodaa, T. Ohta, J. Tamaki, K. Kojima, H. Nariai, Formation and catalytic properties of various nickel phosphates by addition of neodymium oxide. Mater. Chem. Phys. 96, 163–169 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Boonchom, R. Baitahe, Z. Joungmunkong, N. Vittayakorn, Grass blade-like microparticle MnPO4·H2O prepared by a simple precipitation at room temperature. Powder Technol. 203, 310–314 (2010)CrossRefGoogle Scholar
  30. 30.
    W. Wenwei, L. Shushu, W. Xuehan, L.Sen and C. Jinchao, Novel method for preparing NH4NiPO4·6H2O: hydrogen bonding coacervate selective self-assembly. Chin. J. Chem. 28, 2389–2393 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Berhault, P. Afanasiev, H. Loboué, C. Geantet, T. Cseri, C. Pichon, C. Guillot-Deudon, A. Lafond, In situ XRD, XAS, and magnetic susceptibility study of the reduction of ammonium nickel phosphate NiNH4PO4·H2O into nickel phospphide. Inorg. Chem. 48(7), 2985–2992 (2009)CrossRefGoogle Scholar
  32. 32.
    M.A. Majeed Khan, S. Kumar, M. Ahamed, Structural, electrical and optical properties of nanocrystalline silicon thin films deposited by pulsed laser ablation. Mater. Sci. Semicond. Proc. 30, 169 (2015)CrossRefGoogle Scholar
  33. 33.
    B.D. Cullity, S.R. Stock, (2001) Elements of X-ray Diffraction. 3rd edn., Prentice-Hall, Upper Saddle RiverGoogle Scholar
  34. 34.
    M. Haeri, M. Haeri, J. Image Plugin for analysis of porous scaffolds used in tissue engineering. J. Open Res. Softw. 3, e1 (2015), CrossRefGoogle Scholar
  35. 35.
    M. Benfatto, J.A. Solera, J. Chaboy, Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions. Phys. Rev. B 56, 2447 (2002)CrossRefGoogle Scholar
  36. 36.
    S.-C. Lin, S.-Y. Chen, S.-Y. Cheng, Synthesis and magnetic properties of highly arrayed nickel-phosphate nanotubes. Solid State Sci. 7, 896–900 (2005)CrossRefGoogle Scholar
  37. 37.
    Y. Pan, Y. Lin, Y. Liu, C. Liu, Size-dependent magnetic and electrocatalytic properties of nickel phosphide nanoparticles. Appl. Surf. Sci. 366, 439–447 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Tan, D. Sun, H. Yu, T. Wu, B. Yang, Y. Gong, S. Yan, R. Du, Z. Chen, X. Xing, G. Mo, Q. Cai, Z. Wu, Optimal synthesis and magnetic properties of size-controlled nickel phosphide nanoparticles. J. Alloy. Compd. 605, 230–236 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  3. 3.Integrated Nanotechnology Research Center, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations