Advertisement

Performance enhancement of GaN-based near-ultraviolet flip-chip light-emitting diodes with two-step insulating layer scheme on patterned sapphire substrate

  • Wen-Jie Liu
  • Xiao-Long HuEmail author
  • Yi-Jun LiuEmail author
Article
  • 25 Downloads

Abstract

Nitride-based near-ultraviolet (NUV) flip-chip (FC) light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with n-contact full-via-holes (FVH) structure have been fabricated by a two-step insulating layer (IL) method. Comparing with the conventional one-step IL method, the NUV FCLEDs manufactured by two-step IL method exhibit a reduction of 0.19 V in forward voltage and an enhancement of 36.2% in the wall-plug efficiency (WPE). In addition, the WPE of two-step IL NUV FCLEDs was enhanced by 108% as compared to that of the one-step IL FCLEDs on flat sapphire substrate. The current density distribution simulation shows a low current density and uniform distribution for the FCLEDs with FVH structure. The enhanced performance could be attributed to the PSS extraction structure and the more uniform current distribution at the active region due to the uniformly distributed via-holes. The results indicate that the proposed two-step IL method is an effective way to achieve high-power and high-efficiency FCLEDs.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61604179), Department of Science and Technology at Guangdong Province (Nos. 2016B090903001, 2016B090904001, 2016B090918126), the Fundamental Research Funds for the Central Universities (No. 2018ZD44) and the Science and the Technology Project of Guangzhou City (No. 201707010067).

References

  1. 1.
    Y. Muramoto, M. Kimura, S. Nouda, Semicond. Sci. Technol. 29, 084004 (2014)CrossRefGoogle Scholar
  2. 2.
    C.Y. Lee, A.J. Tzou, B.C. Lin, Y.P. Lan, C.H. Chiu, G.C. Chi, C.H. Chen, H.C. Kuo, R.M. Lin, C.Y. Chang, Nanoscale Res. Lett. 9, 505 (2014)CrossRefGoogle Scholar
  3. 3.
    S.F. Yu, R.M. Lin, S.J. Chang, F.C. Chu, Appl. Phys. Express 5, 022102 (2012)CrossRefGoogle Scholar
  4. 4.
    B.R. Lee, T.H. Lee, K.-R. Son, T.G. Kim, J. Alloy. Compd. 741, 21 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Liang, F. Wu, S. Wang, Q. Chen, J. Dai, C. Chen, IEEE T. Electron Dev. 64, 467 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Xu, W. Zhang, M. Peng, J.N. Dai, C.Q. Chen, Opt. Lett. 43, 2684 (2018)CrossRefGoogle Scholar
  7. 7.
    Z.W. Zheng, H. Yu, B.C. Ren, L.M. Zhou, H.Y. Fu, X. Cheng, L.Y. Ying, H. Long, B.P. Zhang, ECS J. Solid State Sci. Technol. 6, R135 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Zhen, P. Ma, Y. Zhang, E. Guo, Y. Tian, B. Liu, S. Guo, L. Shan, J. Wang, J. Li, Appl. Phys. Lett. 105, 354005 (2014)CrossRefGoogle Scholar
  9. 9.
    Y.J. Lee, J.M. Hwang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, IEEE Photon. Technol. Lett. 18, 1152 (2006)CrossRefGoogle Scholar
  10. 10.
    W.C. Ke, F.W. Lee, C.Y. Chiang, Z.Y. Liang, W.K. Chen, T.Y. Seong, ACS Appl. Mater. Inter. 8, 34520 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Li, Y. Fang, J. Zou, C. Zhang, F. Wang, Y. Li, J. Mater. Sci. 50, 6359 (2015)CrossRefGoogle Scholar
  12. 12.
    D.S. Wuu, W.K. Wang, W.C. Shih, R.H. Horng, C.E. Lee, W.Y. Lin, J.S. Fang, IEEE Photon. Technol. Lett. 17, 288 (2005)CrossRefGoogle Scholar
  13. 13.
    D.X. Wu, P. Ma, B.T. Liu, S. Zhang, J.X. Wang, J.M. Li, AIP Adv. 6, 055201 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Hasanov, B.B. Zhu, V.K. Sharma, S.P. Lu, Y.P. Zhang, W. Liu, S.T. Tan, X.W. Sun, H.V. Demir, J. Vac. Sci. Technol. B 34, 011209 (2016)CrossRefGoogle Scholar
  15. 15.
    R.-H. Horng, H.-L. Hu, M.-T. Chu, Y.-L. Tsai, Y.-J. Tsai, C.-P. Hsu, D.-S. Wuu, IEEE Photon. Technol. Lett. 22, 550 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Tian, L. Wang, E. Guo, Z. Liu, T. Zhan, J. Guo, X. Yi, J. Li, G. Wang, J. Phys. D: Appl. Phys. 47, 115102 (2014)CrossRefGoogle Scholar
  17. 17.
    S.H. Kim, Y.H. Song, S.R. Jeon, G.M. Yang, J.S. Ha, S.H. Lee, J.H. Baek, H.J. Park, J. Electron. Mater. 42, 2435 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Jeong, H.J. Park, K.C. Jung, J.H. Baek, J.S. Ha, W.S. Choi, S.H. Park, J. Mater. Sci.-Mater. EL. 26, 3397 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Singh, A.D.S. Nandini, S. Pal, C. Dhanavantri, Superlattice. Microstruct. 89, 89 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Feng, B. Deng, Y. Fu, L.G. Liu, Z.C. Li, M.X. Feng, H.M. Zhao, Q. Sun, Semicond. Sci. Technol. 32, 075009 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Hahn, B. Galler, K. Engl, Jpn. J. Appl. Phys. 53, 100208 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.-C. Chiang, B.-C. Lin, K.-J. Chen, C.-C. Lin, P.-T. Lee, H.-C. Kuo, IEEE Photon. Technol. Lett. 27, 1457 (2015)CrossRefGoogle Scholar
  23. 23.
    X.L. Hu, J. Zhang, H. Wang, X.C. Zhang, J. Phys. D: Appl. Phys. 49, 445102 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Han, D. Lee, B. Jin, H. Jeong, J.-O. Song, T.-Y. Seong, Mat. Sci. Semicon. Process. 31, 153 (2015)CrossRefGoogle Scholar
  25. 25.
    K.H. Lee, S.H. Kim, W.-S. Lim, J.-O. Song, J.-H. Ryou, IEEE Electr. Device Lett. 36, 702 (2015)CrossRefGoogle Scholar
  26. 26.
    I. Ju, Y. Kwon, C.-S. Shin, K.H. Kim, S.-J. Bae, D.-H. Kim, J. Choi, C.G. Ko, IEEE Photon. Technol. Lett. 23, 1685 (2011)CrossRefGoogle Scholar
  27. 27.
    H. Heinke, V. Kirchner, S. Einfeldt, D. Hommel, Appl. Phys. Lett. 77, 2145 (2000)CrossRefGoogle Scholar
  28. 28.
    G. Hao, M. Taniguchi, N. Tamari, S. Inoue, J. Phys. D: Appl. Phys. 49, 235101 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Guo, E. Schubert, J. Appl. Phys. 90, 4191 (2001)CrossRefGoogle Scholar
  30. 30.
    G. Weng, S. Chen, B. Zhang, X. Hu, S. Kuboya, K. Onabe, Opt. Express 25, 24745 (2017)CrossRefGoogle Scholar
  31. 31.
    S.-I. Park, J.-I. Lee, D.-H. Jang, H.-S. Kim, D.-S. Shin, H.-Y. Ryu, J.-I. Shim, IEEE J. Quantum Electron. 48, 500 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information EngineeringGuangdong University of TechnologyGuangzhouChina
  2. 2.School of Physics and OptoelectronicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations