Studies on structure, NLO properties of a new organic NLO crystal: guanidinium 3,5-dihydroxybenzoate
- 11 Downloads
Abstract
A new organic nonlinear optical (NLO) crystal, guanidinium 3,5-dihydroxybenzoate (GDH), was synthesized and grown by solvent evaporation technique. The crystal structure was determined by single crystal X-ray diffraction. Noncovalent interaction analysis and molecular electrostatic potential analysis were conducted which found the structure is stabilized by strong hydrogen bond network, π–π interaction, and electrostatic interactions. The obtained GDH crystal was characterized by using FTIR, Raman, UV–Vis-NIR spectra, TG/DTA, and DSC. GDH crystal shows good transparency of about 95% in the entire NIR region. Furthermore, systematic theoretical DFT calculations at B3LYP level including HOMO–LUMO analysis, static polarizability, and hyperpolarizability density analysis were carried out. The results suggest that GDH crystal is a promising third order NLO material.
Notes
Acknowledgements
This work was financially supported by National Science Foundation of China (NSFC No. 21776204). We thank Mr. Wenlei Wu and Mr. Qi Wang from Chambroad Chemical Industry Research Institute Co., Ltd. for the useful assistance and discussion in some experiments.
Supplementary material
References
- 1.E.A.T.O.N. DF, Science 253, 281 (1991)CrossRefGoogle Scholar
- 2.L. Zhang, L. Zhou, B. Hou, Q. Yin, C. Xie, Trans. Tianjin Univ. 24, 532 (2018)CrossRefGoogle Scholar
- 3.B.F. Abrahams, M.G. Haywood, R. Robson, J. Am. Chem. Soc. 127, 816 (2005)CrossRefGoogle Scholar
- 4.J. Han, C.W. Yau, C.W. Chan, T.C.W. Mak, Cryst. Growth Des. 12, 4457 (2012)CrossRefGoogle Scholar
- 5.D. Xu, M. Jiang, Z. Tan, Acta Chim. Sin. 41, 570 (1983)Google Scholar
- 6.A.M. Petrosyan, R.P. Sukiasyan, H.A. Karapetyan, S.S. Terzyan, R.S. Feigelson, J. Cryst. Growth 213, 103 (2000)CrossRefGoogle Scholar
- 7.V. Sivashankar, R. Siddheswaran, P. Murugakoothan, Mater. Chem. Phys. 130, 323 (2011)CrossRefGoogle Scholar
- 8.X. Liu, X. Wang, X. Yin et al., Crystengcomm. 16, 930 (2013)CrossRefGoogle Scholar
- 9.A. Rajeswari, G. Vinitha, P. Murugakoothan, J. Mater. Sci.: Mater. Electron. 29, 12526 (2018)Google Scholar
- 10.S. Nandhini, K. Sudhakar, S. Muniyappan, P. Murugakoothan, Opt. Laser Technol. 105, 249 (2018)CrossRefGoogle Scholar
- 11.T. Arumanayagam, S. Ananth, P. Murugakoothan, Spectrochim. Acta A 97, 741 (2012)CrossRefGoogle Scholar
- 12.M. Drozd, D. Dudzic, Spectrochim. Acta A 89, 243 (2012)CrossRefGoogle Scholar
- 13.P.S. Pereira Silva, M.A. Pereira Goncalves, M. Ramos Silva, J.A. Paixao, Spectrochim. Acta A 172, 156 (2017)CrossRefGoogle Scholar
- 14.M. Drozd, D. Dudzic, A. Pietraszko, Spectrochim. Acta A 105, 135 (2013)CrossRefGoogle Scholar
- 15.S. Vadivel, A.B. Sultan, S.Abdul Samad, A. Shunmuganarayanan, R. Muthu, Chem. Phys. Lett. 707, 165 (2018)CrossRefGoogle Scholar
- 16.D. Sathya, V. Sivashankar, Optik 126, 5873 (2015)CrossRefGoogle Scholar
- 17.T. Arumanayagam, P. Murugakoothan, Mater. Lett. 65, 2748 (2011)CrossRefGoogle Scholar
- 18.M. Dhavamurthy, R. Raja, K.S.S. Babu, R. Mohan, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
- 19.V. Siva, S.S. Kumar, A. Shameem, M. Raja, S. Athimoolam, S.A. Bahadur, J. Mater. Sci.: Mater. Electron. 28, 12484 (2017)Google Scholar
- 20.T.U. Devi, A.J. Prabha, R. Meenakshi, G. Kalpana, C.S. Dilip, J. Mol. Struct. 1130, 472 (2017)CrossRefGoogle Scholar
- 21.T. Arumanayagam, P. Murugakoothan, J. Cryst. Growth 362, 304 (2013)CrossRefGoogle Scholar
- 22.M. Drozd, J. Mol. Struct. 1155, 776 (2018)CrossRefGoogle Scholar
- 23.M. Drozd, M. Daszkiewicz, J. Mol. Struct. 1161, 383 (2018)CrossRefGoogle Scholar
- 24.T. Arumanayagam, P. Murugakoothan, Optik 123, 1153 (2012)CrossRefGoogle Scholar
- 25.A. Suvitha, P. Vivek, P. Murugakoothan, Optik 124, 3534 (2013)CrossRefGoogle Scholar
- 26.V. Sasikala, D. Sajan, K.Job Sabu, T. Arumanayagam, P. Murugakoothan, Spectrochim. Acta A 139, 555 (2015)CrossRefGoogle Scholar
- 27.G. Sheldrick, Acta Crystallogr. A 64, 112 (2008)CrossRefGoogle Scholar
- 28.G. Sheldrick, Acta Crystallogr. C 71, 3 (2015)CrossRefGoogle Scholar
- 29.G.W.T.M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc. Wallingford CT, (2010)Google Scholar
- 30.S. Grimmea, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)CrossRefGoogle Scholar
- 31.P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
- 32.R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)CrossRefGoogle Scholar
- 33.C. Timothy, C. Jayaraman, S.G.W.S.P.V. Ragué, J. Comput. Chem. 4, 294 (1983)CrossRefGoogle Scholar
- 34.THD Jr., J. Chem. Phys. 90, 1007 (1989)CrossRefGoogle Scholar
- 35.R.A. Kendall, T.H. Dunning Jr., J. Chem. Phys. 96, 6796 (1992)CrossRefGoogle Scholar
- 36.B.J. Orr, J.F. Ward, Mol. Phys. 20, 513 (1971)CrossRefGoogle Scholar
- 37.L. Tian, C. Feiwu, J. Comput. Chem. 33, 580 (2012)CrossRefGoogle Scholar
- 38.W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
- 39.G.R. Desiraju, J. Am. Chem. Soc. 135, 9952 (2013)CrossRefGoogle Scholar
- 40.H. Niu, L. Yu, Chem. Ind. Eng. 33, 69 (2016)Google Scholar
- 41.C. Janiak, J. Chem. Soc. Dalton Trans. 21, 3885 (2000)Google Scholar
- 42.E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, J. Am. Chem. Soc. 132, 6498 (2010)CrossRefGoogle Scholar
- 43.T. Lu, F. Chen, J. Mol. Model. 19, 5387 (2013)CrossRefGoogle Scholar
- 44.P. Muthuraja, T. Joselin Beaula, T. Shanmugavadivu, V.Bena Jothy, M. Dhandapani, J. Mol. Struct. 1137, 649 (2017)CrossRefGoogle Scholar
- 45.W.D. Kumler, G.M. Fohlen, J. Am. Chem. Soc. 64, 1944 (1942)CrossRefGoogle Scholar
- 46.C. Adant, M. Dupuis, J.L. Bredas, Int. J. Quantum Chem. 56, 497 (1995)CrossRefGoogle Scholar
- 47.C. Cassidy, J.M. Halbout, W. Donaldson, C.L. Tang, Opt. Commun. 29, 243 (1979)CrossRefGoogle Scholar
- 48.D.P. Shelton, J.E. Rice, Chem. Rev. 94, 3 (1994)CrossRefGoogle Scholar
- 49.C. Hättig, O. Christiansen, P. Jørgensen, Chem. Phys. Lett. 282, 139 (1998)CrossRefGoogle Scholar
- 50.M. Nakano, K. Yamaguchi, T. Fueno, Chem. Phys. Lett. 185, 550 (1991)CrossRefGoogle Scholar
- 51.M. Nakano, I. Shigemoto, S. Yamada, K. Yamaguchi, J. Chem. Phys. 103, 4175 (1995)CrossRefGoogle Scholar
- 52.M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, J. Am. Chem. Soc. 124, 9648 (2002)CrossRefGoogle Scholar
- 53.S. Manzetti, T. Lu, H. Behzadi, M.D. Estrafili, H.-L. Thi, H. Le, Vach, RSC Adv. 5, 78192 (2015)CrossRefGoogle Scholar