Enhancement of electrical and magnetic properties in acceptor-doped BaTiO3 ferroelectric ceramics

  • K. Madhan
  • C. Jagadeeshwaran
  • R. MurugarajEmail author


BaTi1−xMnxO3 (x = 0.00, 0.25, 0.50, 0.75 mol%) (BTMO) ceramics were synthesized through sol–gel combustion method. The structural studies suggested that Mn-doped BaTiO3 (BTO) ceramics exhibit a tetragonal structure with P4mm space group via Rietveld refinement analysis. Also, the phonon mode at 308 cm−1 through Raman spectral analysis confirms the local structure of tetragonal symmetries. The redshift observed in UV-absorption spectra indicates a decrease of optical band gap from 3.13 to 2.71 eV with increasing Mn2+ doping. The observed decrease in the intensity of PL emission spectra was due to an increase of Mn2+ concentration. This indicates that a decrease in oxygen vacancies and a reduction in the number of electrons attributed to the Burstein–Moss shift. The carrier hopping process between Mn2+ and Mn3+ is responsible for dielectric as well as magnetization behavior. The ferroelectric double hysteresis loops are related to a ferroelectric and anti-ferroelectric order and it increases with the increase of Mn ion concentration in BTO. Through P–E measurements, the value of remnant electric polarization and coercive field found to be increased with Mn concentration in BTO samples. For BTO sample, two EPR signals with g = 1.969 and g = 2.000 singlets can be assigned with ionized Ba and Ti-vacancy defects. In addition, the EPR signal for BTMO shows a good correlation with Ti vacancies as compensating for lattice defects. Further, the Mn doping induced a weak ferromagnetic to ferromagnetic state due to free carrier concentrations.



The authors thankful to Department of Physics, NIT Tiruchirappalli for the multiferroic tester facility (MHRD, Government of India) for PE measurements.


  1. 1.
    C. Srilakshmi, R. Gowravaram, R. Saraf, The effect of nature of transition metal dopant in BaTiO3 perovskite on catalytic reduction of nitrobenzene. RSC Adv 5, 45965–45973 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Nayak, B. Sahoo, K. Chaki, D. Khastgir, Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: its Impedance and temperature dependent dielectric. RSC Adv. 4, 1212–1224 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Gong, X. Wang, S. Zhang, Z. Tian, L. Li, H. Gong, X. Wang, S. Zhang, Z. Tian, L. Li, Electrical and reliability characteristics of Mn-doped nano BaTiO3-based ceramics for ultrathin multilayer ceramic capacitor application. J. Appl. Phys. 112, 114119 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Yoon, J. Park, C. Kim, D. Kim, S. Yoon, J. Park, C. Kim, D. Kim, Difference between compositional and grain size effect on the dielectric nonlinearity of Mn and V-doped BaTiO3 multilayer ceramic capacitors. J. Appl. Phys. 115, 244101 (2014)CrossRefGoogle Scholar
  5. 5.
    K.C. Verma, R.K. Kotnala, Multiferroic approach for Cr, Mn, Fe, Co, Ni, Cu substituted BaTiO3 nanoparticles. Mater. Res. Express 3, 055006 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Zhao, W. Chen, L. Zhang, L. Zhong, The effect of the bipolar field on the aging behavior and the associated properties of the Mn-doped BaTiO3 ceramics. J. Alloys Compd. 618, 707–711 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Chen, X. Zhao, J. Sun, L. Zhang, L. Zhong, Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloys Compd. 670, 48–54 (2016)CrossRefGoogle Scholar
  8. 8.
    Y.Y. Guo, Y. Zhao, H.G. Zhang, N. Zhang, Ceramics during ferroelectric-ferroelectric transition cycle. J. Alloys Compd. 696, 814–819 (2017)CrossRefGoogle Scholar
  9. 9.
    N.V. Dang, T. Phan, T.D. Thanh, V.D. Lam, L.V. Hong, Structural phase separation and optical and magnetic properties ofBaTi1–xMnxO3 multiferroics. J. Appl. Phys. 111, 113913 (2012)CrossRefGoogle Scholar
  10. 10.
    X. Zhao, W. Chen, L. Zhang, Effect of fabrication routes on the microstructure, the dielectric and ferroelectric properties of the Mn-doped BaTiO3 ceramics. Appl. Phys. A. 118, 931–938 (2015)CrossRefGoogle Scholar
  11. 11.
    M.K. Rath, Characterization and photoluminescence studies on hydrothermally synthesized Mn-doped barium titanate nano powders, Mater. Lett. 61, 4821–4823 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Rani, A. Rani, J. Kolte, P. Gopalan, Phase formation,microstructure, electrical and magnetic properties of Mn substituted barium titanate Phase formation, microstructure, electrical and magnetic properties. Ceram. Int. 41, 14057–14063 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Phan, P. Zhang, D. Grinting, S.C. Yu, N.X. Nghia, Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics. J. Appl. Phys. 112, 013909 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J. Appl. Phys. 109, 084105 (2011)CrossRefGoogle Scholar
  15. 15.
    I.J. Berlin, B. Nair, G.P. Daniel, P.V. Thomas, Influence of annealing temperature and oxygen atmosphere on the optical and photoluminescence properties of BaTiO3. J. Mater. Sci. 24, 848–854 (2013)Google Scholar
  16. 16.
    D. Lu, L. Yuan, W. Liang, Z. Zhu, Characterization of oxygen vacancy defects in Ba1–xCaxTiO3 insulating ceramics using electron paramagnetic resonance technique. Jpn. J. Appl. Phys. 55, 011501 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.Y. Guo, J. Liu, Y.F. Guo, T. Wei, Y.J. Guo, N. Zhang, Y.Y. Guo, J. Liu, Y.F. Guo, T. Wei, Y.J. Guo, N. Zhang, External field effects on aging phenomenon of acceptor-doped BaTiO3 ceramics, AIP Adv. 5, 97107 (2015)CrossRefGoogle Scholar
  18. 18.
    E. Venkata Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 synthesized by a chemical route. J. Mater. Chem. C. 4, 1066–1079 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Roukos, N. Zaiter, D. Chaumont, Relaxor behaviour and phase transition of perovskite. J. Adv. Ceram. 7, 124–142 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Xue, Y. Hu, W. Xia, H. Wu, X. Zhu, Molten-salt synthesis of BaTiO3 powders and their atomic-scale structural characterization. J. Alloys Compd. 695, 2870–2877 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Ávila, L. a Ramajo, M.S. Góes, M.M. Reboredo, M.S. Castro, R. Parra, Dielectric behavior of epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning. ACS Appl. Mater. Interfaces 5, 505–510 (2013)CrossRefGoogle Scholar
  22. 22.
    H.A. Ávila, L.A. Ramajo, M.M. Reboredo, M.S. Castro, R. Parra, Hydrothermal synthesis of BaTiO3 from different Ti-precursors and microstructural and electrical properties of sintered samples with submicrometric grain size. Ceram. Int. 37, 2383–2390 (2011)CrossRefGoogle Scholar
  23. 23.
    H.A. Ávila, M.M. Reboredo, R. Parra, M.S. Castro, Dielectric permittivity calculation of composites based on electrospun barium titanate fibers. Mater. Res. Express. 2, 45302 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Gao, Q. Fu, D. Zhou, H. Zu, T. Chen, F. Xue, Nanocrystalline semiconducting donor-doped BaTiO3 ceramics for laminated PTC thermistor. J. Eur. Ceram. Soc. 37, 1523–1528 (2017)CrossRefGoogle Scholar
  25. 25.
    P.M.M. Gazzali, G. Chandrasekaran, Electrical and magnetic phase transition studies of Fe and Mn co-doped BaTiO3. J. Alloys Compd. 656, 98–109 (2015)Google Scholar
  26. 26.
    N. Rajamanickam, K. Jayakumar, K. Ramachandran, Influence of Mn ion on flower shaped perovskite BaTiO3 nanostructures based dye-sensitized solar cell. Nano-Struct. Nano-Objects. 9, 19–25 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Samant, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Ra, M. Murakami, Band gap reduction and redshift of lattice vibrational spectra in Nb and Fe co-doped PLZT. J. Mater. Sci. 52, 13012–13022 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Qi, L. Zhang, G. Jin, Y. Wan, Y. Tang, D. Xu, Q. He, F. Wang, Y. Li, D. Sun, UV–visible spectra and conductive property of Mn-doped BaTiO3 and Ba0.93Sr0.07TiO3 ceramics. Ferroelectrics. 458, 64–69 (2014)CrossRefGoogle Scholar
  29. 29.
    L.V. Maneeshya, P.V. Thomas, K. Joy, Effects of site substitutions and concentration on the structural, optical and visible photoluminescence properties of Er doped BaTiO3 thin films prepared by RF magnetron sputtering. Opt. Mater. (Amst.) 46, 304–309 (2015)CrossRefGoogle Scholar
  30. 30.
    S.K. Ghosh, S.K. Rout, Induced instability in local structure and ferroelectric polarization of rare earth modified BZT relaxor ceramics. Curr. Appl. Phys. 16, 989–1000 (2016)CrossRefGoogle Scholar
  31. 31.
    E. Devi, B.J. Kalaiselvi, K. Madhan, D. Vanidha, S.S. Meena, R. Kannan, Quantification of charge carriers participating antiferromagnetic to weak ferromagnetic phase transition in Na doped LaFeO3 nano multiferroics. J. Appl. Phys. 124, 8 (2018)Google Scholar
  32. 32.
    N. Sharma, A. Gaur, U. Kr, Multiferroic behavior of nanocrystalline BaTiO3 sintered at different temperatures. Ceram. Int. 40, 16441–16448 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Kanta, N. Sangwan, S. Ahlawat, S. Rani, R.S. Rani, Kundu, Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Ceram. Int. 44, 10315–10321 (2018)CrossRefGoogle Scholar
  34. 34.
    K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9, 1397–1406 (2009)CrossRefGoogle Scholar
  35. 35.
    V.R. Mudinepalli, L. Feng, W.-C. Lin, B.S. Murty, Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J. Adv. Ceram. 4(1), 46–53 (2015)CrossRefGoogle Scholar
  36. 36.
    L. Curecheriu, S.-B. Balmus, M.T. Buscaglia, V. Buscaglia, A. Ianculescu, L. Mitoseriu, Grain size-dependent properties of dense nanocrystalline barium titanate ceramics, J. Am. Ceram. Soc. 95, 1–10 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Zhang, W. Li, Y. Hou, Y. Yu, W. Cao, Y. Feng, W. Fei, Positive/negative electrocaloric effect induced by defect dipoles in PZT ferroelectric bilayer thin films. RSC Adv. 6, 71934–71939 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Chandrasekhar, P. Sonia, Kumar, Synthesis and characterizations of NaNbO3 modified BNT-BT-BKT ceramics for energy storage applications. Phys. B Condens. Matter. 497, 59–66 (2016)CrossRefGoogle Scholar
  39. 39.
    S.K. Das, B.K. Roul, Double hysteresis loop in BaTi1–xHfxO3 ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 26, 5833–5838 (2015)CrossRefGoogle Scholar
  40. 40.
    M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, Z. Zhao, M. Nygren, C. Harnagea, D. Piazza, C. Galassi, High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTi O3 ceramics. Phys. Rev. B 73, 1–10 (2006)CrossRefGoogle Scholar
  41. 41.
    T. Kolodiazhnyi, A. Petric, Analysis of point defects in polycrystalline BaTiO3 by electron paramagnetic resonance. Phys. Chem. Solids 64, 953–960 (2003)CrossRefGoogle Scholar
  42. 42.
    D. Lu, X. Sun, B. Liu, J. Zhang, T. Ogata, Structural and dielectric properties, electron paramagnetic resonance, and defect chemistry of Pr-doped BaTiO3 ceramics. J. Alloys Compd. 615, 25–34 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, MIT CampusAnna UniversityChennaiIndia

Personalised recommendations