Advertisement

Synthesis of Ag/Sm(OH)3 nanotubes with enhanced photocatalytic activity under visible light

  • Lixiong YinEmail author
  • Jiameng Fang
  • Haofan Zhang
  • Yin Lin
  • Xingang Kong
  • Jianfeng HuangEmail author
  • Huimin Li
  • Peijie Bai
Article
  • 29 Downloads

Abstract

In this article, a novel photocatalyst: Ag/Sm(OH)3 nanotubes was successfully synthesized using a common oil bath approach at 80 °C. The composition, structure, morphology, and photocatalytic properties were investigated in detail. The results of field emission scanning electron microscopy and transmission electron microscopy revealed that the diameters of Sm(OH)3 nanotubes are about 50 nm, its length are in the range of 300–350 nm, and Ag nanoparticles with size of 5–20 nm are uniformly anchored on the surface of Sm(OH)3 nanotubes. The UV–vis diffuse reflectance spectra indicated excellent photo absorption of Ag/Sm(OH)3 shifting from UV-light to visible-light. The transient photocurrent responses demonstrated that the deposition of Ag nanoparticles onto the Sm(OH)3 nanotubes promote the separation of photogenerated carriers sufficiently. The as-prepared Ag/Sm(OH)3 nanotubes exhibit a remarkable photocatalytic activity. The possible mechanism has been studied. The excellent photocatalytic performance for degrading the organic pollutants is ascribed to the formation of surface plasmon resonance induced by Ag nanoparticles, which can enhance the absorption of visible light and boost photogenerated charge separation/transfer.

Notes

Acknowledgements

This research work was financially supported by National Natural Science Foundation of China (No. 51772178); The China Postdoctoral Science Foundation (No. 2016M592737); State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201729); The Serve Local Special Projects of Shaanxi Provincial Department of Education (No. 17JF004); University Student Innovation and Entrepreneurship Project (No. 201710708004).

Compliance with ethical standards

Conflict of interest

Dr. Lixiong Yin and other co-authors have no conflict of interest.

References

  1. 1.
    D. Wang, J.F. Huang, L.X. Yin, Mater. Lett. 116, 393 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Feng, H. Chen, F. Jiang, Chem. Eng. J. 347, 849 (2018)CrossRefGoogle Scholar
  3. 3.
    H.C. Huang, C.L. Yang, M.S. Wang, Spectrochim Acta A 208, 65 (2019)CrossRefGoogle Scholar
  4. 4.
    H. Xu, Y. Huang, D. Luo, Sep. Purif. Technol. 210, 281 (2019)CrossRefGoogle Scholar
  5. 5.
    H. Meng, T. Wang, X. Yu, RSC Adv. 5, 107088 (2015)CrossRefGoogle Scholar
  6. 6.
    X.-J. Wen, C.-G. Niu, L. Zhang, ACS Sustain. Chem. Eng. 5, 5134 (2017)CrossRefGoogle Scholar
  7. 7.
    L.X. Yin, F. Wang, J.Z. Ma, Mater. Lett. 152, 109 (2015)CrossRefGoogle Scholar
  8. 8.
    J.F. Huang, D. Wang, L. Yin, J. Alloys Compd. 612, 233 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Dan, H. Jianfeng, Y. Lixiong, RSC Adv 4, 44491 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Yu, L.W. Shang, D.J. Wang, Solid State Sci. 80, 1 (2018)CrossRefGoogle Scholar
  11. 11.
    R. Kumar, D. Rana, A. Umar, Talanta. 137, 204 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, D. Zhu, H. He, J. Phys. Chem. Solids 102, 27 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Zheng, B. Huang, X. Qin, J. Mater. Chem. 21, 9079 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Luo, D. Xu, L. Di, ACS Appl. Mater. Interfaces. 7, 17061 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Peng, L. Tang, G. Zeng, Biosens Bioelectron. 121, 19 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Zhu, J. Phys. Chem. C 113, 3164 (2009)CrossRefGoogle Scholar
  17. 17.
    J.M. Zhang, X. Jin, P.I. Morales-Guzman, ACS Nano 10, 4496 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Lou, C. Li, X. Gao, ACS Appl. Mater. Interfaces. 8, 16147 (2016)CrossRefGoogle Scholar
  19. 19.
    C. .Ratanatawanate, C.R. Xiong, K.J. Balkus, ACS Nano 2, 8 (2008)CrossRefGoogle Scholar
  20. 20.
    J.C. Kim, J. Choi, Y.B. Lee, Chem. Commun. (Camb.). 5024 (2006)Google Scholar
  21. 21.
    M. Ji, Y. Liu, J. Di, Appl. Catal. B 237, 1033 (2018)CrossRefGoogle Scholar
  22. 22.
    L. Hao, S. Tang, J. Yan, Mater. Sci. Semicon Proc. 89, 161 (2019)CrossRefGoogle Scholar
  23. 23.
    B.S. Colodrero, A. Mihi, L. Häggman, Adv. Mater. 21, 764 (2009)CrossRefGoogle Scholar
  24. 24.
    Q. Xie, Y. Ma, X. Wang, ACS Nano. 10, 1283 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Jiang, X. Zhang, P. Sun, J. Phys. Chem. C. 115, 20555 (2011)CrossRefGoogle Scholar
  26. 26.
    H.F. Shi, G. Yan, Y. Zhang, ACS Appl. Mater. Interfaces. 9, 422 (2017)CrossRefGoogle Scholar
  27. 27.
    T. Selvamani, S.R.B. Gnana, S. Anandan, Phys. Chem. Chem. Phys. 18, 7768 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Sun, P. Gao, Y. Yang, ACS Appl. Mater. Interfaces. 8, 18126 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Qiu, W. Li, F. Wang, J. Colloid & Interface Sci. 493, 1 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Qin, W. Li, Y. Xia, ACS Appl. Mater. Interfaces. 3, 3152 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Di, J. Xia, M. Ji, Appl. Catal. B. 188, 376 (2016)CrossRefGoogle Scholar
  32. 32.
    X. She, H. Xu, H. Wang, Dalton Trans. 44, 7021 (2015)CrossRefGoogle Scholar
  33. 33.
    X. Li, Z. Ding, L. Zhang, Electrochim Acta. 241, (2017)Google Scholar
  34. 34.
    F.I. Shaikh, L.P. Chikhale, J.Y. Patil, J Rare Earth 35, 813 (2017)CrossRefGoogle Scholar
  35. 35.
    G. Jia, K. Liu, Y.H. Zheng, J. Phys. Chem. C 113, 6050 (2009)CrossRefGoogle Scholar
  36. 36.
    C. Shifu, J. Mingsong, Y. Yunguang, Mater. Chem. Phys. 134, 951 (2012)CrossRefGoogle Scholar
  37. 37.
    D. Mitoraj, R. Beranek, H. Kisch, Photochem. Photobiol. Sci. 9, 31 (2010)CrossRefGoogle Scholar
  38. 38.
    F. Tian, H. Zhao, Z. Dai, Ind. Eng. Chem. Res. 55, 4969 (2016)CrossRefGoogle Scholar
  39. 39.
    O.P. Moreno, R.G. Pérez, R.P. Merino, Optik-Int. J. Light Electron Opt. 135, 70 (2017)CrossRefGoogle Scholar
  40. 40.
    T.D. Pasatoiu, C. Tiseanu, A.M. Madalan, Inorg. Chem. 50, 5879 (2011)CrossRefGoogle Scholar
  41. 41.
    A.B. Jasso-Salcedo, G. Palestino, V.A. Escobar-Barrios, J. Catal. 318, 170 (2014)CrossRefGoogle Scholar
  42. 42.
    L. Chen, T.T. Thanhthuy, C.A. Huang, Appl. Surf. Sci. 273, 82 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Zhou, T. Wen, B. Chang, Dalton Trans. 45, 13709 (2016)CrossRefGoogle Scholar
  44. 44.
    X.J. Wen, C.G. Niu, L. Zhang, ACS Sustain. Chem. Eng. 5, (2017)Google Scholar
  45. 45.
    Z. Zhang, D. Jiang, C. Xing, Dalton Trans. 44, 11582 (2015)CrossRefGoogle Scholar
  46. 46.
    B. Yang, L. Ye, T. Chen, ACS Appl. Mater. Interfaces. 8, (2016)Google Scholar
  47. 47.
    W. Feng, Z. Fang, B. Wang, J. Mater. Chem. A. 5, (2016)Google Scholar
  48. 48.
    L. Liao, Q. Zhang, Z. Su, Nat. Nanotechnol. 9, 69 (2014)CrossRefGoogle Scholar
  49. 49.
    W. Sun, S. Meng, S. Zhang, J. Phys. Chem. C. 122, 15409 (2018)CrossRefGoogle Scholar
  50. 50.
    R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A. 3, 6565 (2015)CrossRefGoogle Scholar
  51. 51.
    X. Zheng, D. Li, X. Li, Appl. Catal. B. 168–169, 408 (2015)Google Scholar
  52. 52.
    J.Q. Zha, W.Q. Jie, T.T. Tan, J. Phys. Chem. C 111, 12834 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Prakash, J. Appenzeller, ACS Nano 11, 1626 (2017)CrossRefGoogle Scholar
  54. 54.
    Y. Wang, J. Yu, W. Xiao, J. Mater. Chem. A. 2, 3847 (2014)CrossRefGoogle Scholar
  55. 55.
    X. Kong, L. Li, Q. Feng, J. Alloys Compd. 727, (2017)Google Scholar
  56. 56.
    L. Ye, J. Liu, C. Gong, ACS Catal. 2, 1677 (2012)CrossRefGoogle Scholar
  57. 57.
    A. Furube, L.C. Du, K. Hara, J. Am. Chem. Soc. 129, 14852 (2007)CrossRefGoogle Scholar
  58. 58.
    M.Z. Ge, C.Y. Cao, S.H. Li, Nanoscale. 8, 5226 (2016)CrossRefGoogle Scholar
  59. 59.
    C. Gu, C. Cheng, H. Huang, Crystal Growth Des. 9, 3278 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lixiong Yin
    • 1
    Email author
  • Jiameng Fang
    • 1
  • Haofan Zhang
    • 1
  • Yin Lin
    • 1
  • Xingang Kong
    • 1
  • Jianfeng Huang
    • 1
    Email author
  • Huimin Li
    • 1
  • Peijie Bai
    • 1
  1. 1.School of Material Science and EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China

Personalised recommendations