Advertisement

Intense field electron emission source designed from large area array of dense rutile TiO2 nanopillars

  • Pravin N. Didwal
  • Parameshwar R. Chikate
  • Prashant K. Bankar
  • Mahendra A. More
  • Rupesh S. DevanEmail author
Article

Abstract

The uniform and highly dense nanopillars of rutile TiO2 were synthesized by the hydrothermal method and demonstrated as a highly intense source for the application in field electron emission. The TiO2 nanopillars formed by a bunch of the many nanorods were nearly perpendicular to FTO substrate. The stoichiometric composition and chemical properties of Ti and O were confirmed by X-ray photoelectron spectroscopy. The rutile TiO2 nanopillars transferred on the carbon tape to prepare cathode for field emission (FE) performance exhibit the superior current density of 1.03 mA/cm2 at the applied electric field of 3.2 V/µm, and the lower turn-on field of 1.2 V/µm defined at a current density of 10 µA/cm2. The result of the FE revealed that rutile TiO2 nanostructure enhances the FE without any coating, doping, and surface modifications.

Notes

Acknowledgements

The authors would like to thank the UGC-DAE-CSR Indore, and Department of Science and Technology (DST), Ministry of Science and Technology of India, for their financial support of this research under Grant No. CSR-IC-BL-65/CRS-182/2017-18/189, and INSPIRE Faculty Award No. DST/INSPIRE Faculty Award/2013/IFA13-PH-63, respectively.

References

  1. 1.
    R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326–3370 (2012)CrossRefGoogle Scholar
  2. 2.
    P.N. Didwal, K.S. Pawar, P.R. Chikate, A.C. Abhyankar, H.M. Pathan, R.S. Devan, J. Mater. Sci.-Mater. Electron. 27, 12446–12451 (2016)CrossRefGoogle Scholar
  3. 3.
    C.X. Tian, Mater. Res. Bull. 103, 83–88 (2018)CrossRefGoogle Scholar
  4. 4.
    J.S. Barbosa, D.M.A. Neto, R.M. Freire, J.S. Rocha, L. Fechine, J.C. Denardin, A. Valentini, T.G. de Araujo, S.E. Mazzetto, P.B.A. Fechine, Ultrason. Sonochem. 48, 340–348 (2018)CrossRefGoogle Scholar
  5. 5.
    R.S. Devan, Y.R. Ma, R.A. Patil, S.M. Lukas, RSC Adv. 6, 62218–62225 (2016)CrossRefGoogle Scholar
  6. 6.
    R.A. Patil, R.S. Devan, Y. Liou, Y.R. Ma, Sol. Energy Mater. Sol. Cells 147, 240–245 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Liang, G.M. Zhang, ACS Appl. Mater. Interfaces 4, 6053–6061 (2012)CrossRefGoogle Scholar
  8. 8.
    J.L. Jiang, H.Q. Fang, X. Zhang, K.C. He, Z.Q. Wei, X.J. Pang, J.F. Dai, Diam. Relat. Mat. 74, 205–211 (2017)CrossRefGoogle Scholar
  9. 9.
    Q.W. Yue, J.X. Duan, L.L. Zhu, K. Zhang, J. Zhang, H. Wang, J. Mater. Sci. 53, 15257–15270 (2018)CrossRefGoogle Scholar
  10. 10.
    Y.P. Gan, L.Y. Zhu, H.P. Qin, Y. Xia, H. Xiao, L.S. Xu, L.Y. Ruan, C. Liang, X.Y. Tao, H. Huang, W.K. Zhang, Solid State Ion. 269, 44–50 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Deb, J.C. Dhar, J. Electron. Mater. 47, 6078–6085 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Fleischer, A. Chatzitakis, T. Norby, Mater. Sci. Semicond. Process. 88, 186–191 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Landmann, E. Rauls, W.G. Schmidt, J. Phys.-Condes. Matter. 24, 195503 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Alivov, M. Klopfer, S. Molloi, Nanotechnology, 21, 505706 2010CrossRefGoogle Scholar
  15. 15.
    H. Fu, K. Yu, H.L. Li, J.Z. Li, B.J. Guo, Y.H. Tan, C.Q. Song, Z.Q. Zhu, Dalton Trans. 44, 1664–1672 (2015)CrossRefGoogle Scholar
  16. 16.
    R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, A.K. Tyagi, J. Phys. Chem. C 116, 16740–16746 (2012)CrossRefGoogle Scholar
  17. 17.
    C.C. Wang, K.W. Wang, T.P. Perng, Appl. Phys. Lett. 96, 143102 (2010)CrossRefGoogle Scholar
  18. 18.
    L.Q. Wang, C.W. Wang, J.B. Chen, R.S. Guo, F. Zhou, W.M. Liu, Thin Solid Films 519, 8173–8177 (2011)CrossRefGoogle Scholar
  19. 19.
    J.B. Chen, C.W. Wang, Y.M. Kang, D.S. Li, W.D. Zhu, F. Zhou, Appl. Surf. Sci. 258, 8279–8282 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Sarkar, C.K. Ghosh, K.K. Chattopadhyay, CrystEngComm 14, 2683–2690 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Yang, J. Liang, G.M. Zhang, J. Li, H. Liu, Z.Y. Shen, Vacuum 123, 17–22 (2016)CrossRefGoogle Scholar
  22. 22.
    R.S. Devan, V.P. Thakare, V.V. Antad, P.R. Chikate, R.T. Khare, M.A. More, R.S. Dhayal, S.I. Patil, Y.R. Ma, L. Schmidt-Mende, ACS Omega 2, 2925–2934 (2017)CrossRefGoogle Scholar
  23. 23.
    P.R. Chikate, K.D. Daware, D.S. Gayhane, Y.R. Ma, R.J. Choudhary, S.I. Patil, M.A. More, D.M. Phase, S.W. Gosavi, P.M. Shirage, R.S. Deyan, ChemistrySelect 3, 7891–7899 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Iraj, F.D. Nayeri, E. Asl-Soleimani, K. Narimani, J. Alloys Compd. 659, 44–50 (2016)CrossRefGoogle Scholar
  25. 25.
    T.S. Bhat, R.S. Devan, S.S. Mali, A.S. Kamble, S.A. Pawar, I.Y. Kim, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci.-Mater. Electron. 25, 4501–4511 (2014)CrossRefGoogle Scholar
  26. 26.
    R.S. Devan, W.D. Ho, C.H. Chen, H.W. Shiu, C.H. Ho, C.L. Cheng, S.Y. Wu, Y. Liou, Y.R. Ma, Nanotechnology 20, 445708 (2009)CrossRefGoogle Scholar
  27. 27.
    R.S. Devan, W.D. Ho, S.Y. Wu, Y.R. Ma, J. Appl. Crystallogr. 43, 498–503 (2010)CrossRefGoogle Scholar
  28. 28.
    R.S. Devan, J.H. Lin, W.D. Ho, S.Y. Wu, Y. Liou, Y.R. Ma, J. Appl. Crystallogr. 43, 1062–1067 (2010)CrossRefGoogle Scholar
  29. 29.
    R.S. Devan, W.D. Ho, J.H. Lin, S.Y. Wu, Y.R. Ma, P.C. Lee, Y. Liou, Cryst. Growth Des. 8, 4465–4468 (2008)CrossRefGoogle Scholar
  30. 30.
    R.S. Devan, Y.R. Ma, M.A. More, R.T. Khare, V.V. Antad, R.A. Patil, V.P. Thakare, R.S. Dhayal, L. Schmidt-Mende, RSC Adv. 6, 98722–98729 (2016)CrossRefGoogle Scholar
  31. 31.
    S.S. Badadhe, S.R. Suryawanshi, R.A. Naphade, M.V. Chaudhary, M.A. More, M.V. Shelke, S.B. Ogale, J. Phys. D 49, 145301 (2016)CrossRefGoogle Scholar
  32. 32.
    G.J. Wang, Z.C. Li, M.Y. Li, C.H. Chen, S.S. Lv, J.C. Liao, Sci. Rep. 6, 29470 (2016)CrossRefGoogle Scholar
  33. 33.
    X.B. Yan, B.K. Tay, P. Miele, Carbon 46, 753–758 (2008)CrossRefGoogle Scholar
  34. 34.
    W.D. Zhu, C.W. Wang, J.B. Chen, D.S. Li, F. Zhou, H.L. Zhang, Nanotechnology 23, 455204 (2012)CrossRefGoogle Scholar
  35. 35.
    A.Z. Liao, C.W. Wang, J.B. Chen, X.Q. Zhang, Y. Li, J. Wang, Mater. Res. Bull. 70, 988–994 (2015)CrossRefGoogle Scholar
  36. 36.
    X.W. Wei, C.X. Sun, Z.L. Xu, M.B. Dong, W. Yu, Huang, Appl. Phys. Lett. 88, 213102 (2006)CrossRefGoogle Scholar
  37. 37.
    R.G. Forbes, Proc. R. Soc. A 469, 20130271 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea
  2. 2.Department of Physics (FormerlySavitribai Phule Pune University, University of Pune)PuneIndia
  3. 3.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of TechnologyIndoreIndia

Personalised recommendations