Advertisement

Enhanced triethylamine gas sensing performance of the PbS nanoparticles-functionalized MoO3 nanobelts

  • Qi Wei
  • Peng SongEmail author
  • Zhuoqi Li
  • Zhongxi Yang
  • Qi WangEmail author
Article
  • 19 Downloads

Abstract

To further enhance the sensing properties of metal oxide semiconductor, the combination with some metal sulfide will be an effective method. In our research, the heterostructures of MoO3 nanobelts and PbS nanoparticles were successfully synthesized through simple and less expensive wet chemical routes. The microstructure, morphology, and chemical composition of MoO3@PbS nanocomposites were analyzed by various characterizations. Compared to the pristine MoO3 nanobelts, MoO3@PbS nanocomposites-based sensor exhibited higherresponse and quicker response/recovery rates to triethylamine (TEA). The limit of detection is better than 0.4 ppm, and the response time and recovery time were only 2 s and 10 s, respectively. The significantly improvement of TEA sensing properties is attributed to the combination of changing electronic structures and p–n heterojunctions. The present PbS nanoparticles-functionalized MoO3 nanobelts could be a promising candidate for the practical application to selectively detect TEA vapor.

Notes

Acknowledgements

We thank senior experimentalist Jianrong Wang (School of Material Science and Engineering, University of Jinan, Jinan) for the dynamic light scattering (DLS) measurement. This work was supported by National Natural Science Foundation of China (No. 61102006), and Natural Science Foundation of Shandong Province, China (Nos. ZR2018LE006 and ZR2015EM019).

References

  1. 1.
    P. Kumar, L. Morawska, C. Martani, The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Kaushik, R. Kumar, S.K. Arya, Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115, 4571–4606 (2015)CrossRefGoogle Scholar
  3. 3.
    C.A. McLinden, V. Fioletov, M.W. Shephard, Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 9, 496–500 (2016)CrossRefGoogle Scholar
  4. 4.
    Z.R. Ma, P. Song, Z.X. Yang, Q. Wang, Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl. Surf. Sci. 465, 625–634 (2019)CrossRefGoogle Scholar
  5. 5.
    A. Sutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B 222, 95–105 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Drobek, J.H. Kim, M. Bechelany, MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mate. Interfaces 8, 8323–8328 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Song, Q. Wang, Z.X. Yang, Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sens. Actuators B 173, 839–846 (2012)CrossRefGoogle Scholar
  8. 8.
    H.H. Yan, P. Song, S. Zhang, Z.X. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Compds. 662, 118–125 (2016)CrossRefGoogle Scholar
  9. 9.
    E. Comini, Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568, 28–40 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Lü, W. han, Y. He, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6, 4186–4195 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Li, W. Zeng, Y. Zhang, Nanobelt-assembled nest-like MoO3 hierarchical structure: Hydrothermal synthesis and gas-sensing properties. Mater. Lett. 160, 476–479 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, S. Yang, Y. Lu, Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol. Appl. Surf. Sci. 359, 114–119 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, P. Song, J. Li, Z.X. Yang, Q. Wang, Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sens. Actuators B 249, 458–466 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Zhao, M. Cao, C. Hu, Thermal oxidation synthesis hollow MoO3 microspheres and their applications in lithium storage and gas-sensing. Mater. Res. Bull. 48, 2289–2295 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Qin, Y. Cao, J. Xie, Solid-state chemical synthesis and xylene-sensing properties of α-MoO3 arrays assembled by nanoplates. Sens. Actuators B 242, 769–776 (2017)CrossRefGoogle Scholar
  16. 16.
    E. Comini, L. Yubao, Y. Brando, Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chem. Phys. Lett. 407, 368–371 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Bai, S. Chen, L. Chen, Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens. Actuators B 174, 51–58 (2012)CrossRefGoogle Scholar
  18. 18.
    Y.J. Chen, G. Xiao, T.S. Wang, α-MoO3/TiO2 core/shell nanorods: controlled-synthesis and low-temperature gas sensing properties. Sens. Actuators B 155, 270–277 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Bai, C. Chen, Y. Tian, Facile synthesis of α-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance. Mater. Res. Bull. 64, 252–256 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Zhang, P. Song, H.H. Yan, Q. Wang, Self-assembled hierarchical Au-loaded In2O3 hollow microspheres with superior ethanol sensing properties. Sens. Actuators B 231, 245–255 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H. Ehrlich, Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J. Electroanal. Chem. 823, 61–66 (2018)CrossRefGoogle Scholar
  22. 22.
    N.D. Singh, C.Y. Yan, P.S. Lee, Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors. Sens. Actuators B 150, 15–24 (2010)Google Scholar
  23. 23.
    C. Wang, J.Y. Liu, Q.Y. Yang, P. Sun, Y. Gao, F.M. Liu, J. Zheng, G.Y. Lu, Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators B 220, 59–67 (2015)CrossRefGoogle Scholar
  24. 24.
    Y.T. Wang, Y.Y. Lv, W.W. Zhan, Z.X. Xie, Q. Kuang, L.S. Zheng, Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A 3, 12796–12803 (2015)CrossRefGoogle Scholar
  25. 25.
    D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuator B 204, 250–272 (2014)CrossRefGoogle Scholar
  26. 26.
    D.Z. Zhang, J.J. Liu, H.Y. Chang, A.M. Liu, B.K. Xia, Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv. 5, 18666–18672 (2015)CrossRefGoogle Scholar
  27. 27.
    N.B. Sonawane, K.V. Gurav, R.R. Ahire, J.H. Kim, B.R. Sankapal, CdS nanowires with PbS nanoparticles surface coating as roomtemperature liquefied petroleum gas sensor. Sens. Actuators B 216, 78–83 (2014)CrossRefGoogle Scholar
  28. 28.
    R.S. Chen, J. Wang, Y. Xia, L. Xiang, Near infrared light enhanced room-temperature NO2 gas sensing byhierarchical ZnO nanorods functionalized with PbS quantum dots. Sens. Actuators B 255, 2538–2545 (2018)CrossRefGoogle Scholar
  29. 29.
    W. Jiang, D. Wei, S. Zhang, X. Chuai, P. Sun, The facile synthesis of MoO3 microsheet and its excellent gas-sensing performance toward triethylamine: high selectivity, excellent stability and superior repeatability. New J. Chem. 42, 15111–15120 (2018)CrossRefGoogle Scholar
  30. 30.
    H.Y. Yang, X.L. Cheng, X.F. Zhang, Z.K. Zheng, X.F. Tang, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays. Sens. Actuators B 205, 322–328 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Zhang, P. Song, J. Zhang, H.H. Yan, J. Li, Z.X. Yang, Q. Wang, Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sens. Actuators B 242, 983–993 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Swiatowska-Mrowiecka, S.D. Diesbach, V. Maurice, Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J. Phys. Chem. C 112, 11050–11058 (2009)CrossRefGoogle Scholar
  33. 33.
    L. Sui, Y.M. Xu, X.F. Zhang, Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective TEA sensor. Sens. Actuators B 208, 406–414 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Wang, X. Chu, M. Gong, Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method. Sens. Actuators B 117, 183–187 (2006)CrossRefGoogle Scholar
  35. 35.
    X. Yang, Q. Yu, S. Zhang, Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4, composites. Sens. Actuators B 266, 213–220 (2018)CrossRefGoogle Scholar
  36. 36.
    D. Ju, H. Xu, Z. Qiu, Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sens. Actuators B 200, 288–296 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Wu, X. Zhang, S. Gao, Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property. Crystengcomm 15, 10123–10131 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Wang, X. Zhang, Y. Ma, Rapid microwave-assisted hydrothermal synthesis of one-dimensional MoO3 nanobelts. Mater. Lett. 164, 623–626 (2016)CrossRefGoogle Scholar
  39. 39.
    A.T. Güntner, M. Righettoni, S.E. Pratsinis, Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sens. Actuators B 223, 266–273 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Sui, X. Song, X. Cheng, An ultraselective and ultrasensitive TEA sensor based on α-MoO3 hierarchical nanostructures and the sensing mechanism. CrystEngComm 17, 6493–6503 (2015)CrossRefGoogle Scholar
  41. 41.
    A.K. Rath, M. Bernechea, L. Martinez, Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 23, 3712–3717 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Lu, C. Shao, K. Wang, p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl. Mater. Inter. 6, 9004–9012 (2014)CrossRefGoogle Scholar
  43. 43.
    Z.Q. Li, P. Song, Z.Y. Yang, Q. Wang, In situ formation of one-dimensional CoMoO4/MoO3 heterojunction as an effective trimethylamine gas sensor. Ceram. Int. 44, 3364–3370 (2018)CrossRefGoogle Scholar
  44. 44.
    Y.B. Zhang, J. Yin, L. Li, Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens. Actuators B 202, 500–507 (2014)CrossRefGoogle Scholar
  45. 45.
    T.S. Wang, Q.S. Wang, C.L. Zhu, Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO p-n junction nanocomposite. Sens. Actuators B 171, 256–262 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations