Advertisement

Growth behavior of preferentially scalloped intermetallic compounds at extremely thin peripheral Sn/Cu interface

  • Shengyan Shang
  • Anil Kunwar
  • Yanfeng Wang
  • Lin Qu
  • Haitao MaEmail author
  • Yunpeng WangEmail author
Article
  • 18 Downloads

Abstract

The growth behaviour of Cu6Sn5 intermetallic compound (IMC) at the solder height controlled post-spread Sn/Cu interface is investigated for different initial solder ball volumes, reflow temperatures and cooling rates. Because of the limited solder thickness at the periphery, the IMC retains a preferential scalloped morphology, even after cooling. For solder balls of initial diameters of 500, 1000 and 1700 μm, with the maximum solder height at the peripheral regime not exceeding 150 μm, reflowed at 250 °C and undergoing air cooling, it has been revealed that IMC characterized with larger layer thickness and grain diameter, correspond to the sample of smaller ball size. The increase in reflow temperature for a solder of initial size of 500 μm, is characterized by the increase in IMC thickness, developments of few but quite large faceted planes over the original scalloped morphology and non-uniformity in the grain diameter. In contrary the to air cooling (cooling rate ≥ 4.0 K/s), the IMCs obtained at the thin film zone, for furnace cooling (cooling rate = 0.037 K/s), are very larger, both in grain size and layer thickness. Moreover, the scalloped Cu6Sn5 surface in furnace cooled specimens, bear many but tiny facets. Finite element analysis is utilized to numerically estimate the diffusion of Cu into the geometrical volumes of solder. Ostwald ripening and film height are the important parameters defining the growth behavior of the compound in miniaturized solder joints.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51871040 and 51571049) and “Research Fund for International Young Scientists” of National Natural Science Foundation of China (Grant No. 51750110504). The synchrotron radiation experiments were performed at the BL13W1 beam line of Shanghai Synchrotron Radiation Facility (SSRF), China.

References

  1. 1.
    W. Zhou, H. Zhang, W. Ping, Whisker growth in Sn and SnPb thin films under electromigration. Vacuum 107, 103–107 (2014)Google Scholar
  2. 2.
    W.H. Kohl, Soldering and brazing. Vacuum 14, 175–198 (1964)Google Scholar
  3. 3.
    A. Kunwar, H. Ma, J. Sun, S. Li, J. Liu, Modeling the diffusion-driven growth of a pre-existing gas bubble in molten tin. Met. Mater. Int. 21(5), 962–970 (2015)Google Scholar
  4. 4.
    A. Kunwar, H. Ma, H. Ma, J. Sun, N. Zhao, M. Huang, On the increase of intermetallic compound’s thickness at the cold side in liquid Sn and SnAg solders under thermal gradient. Mater. Lett. 172(August), 211–215 (2016)Google Scholar
  5. 5.
    H. Ma, A. Kunwar, J. Sun, B. Guo, H. Ma, In situ study on the increase of intermetallic compound thickness at anode of molten tin due to electromigration of copper. Scr. Mater. 107, 88–91 (2015)Google Scholar
  6. 6.
    Y. Tang, S. Luo, G. Li, Z. Yang, C. Hou, Ripening growth kinetics of Cu6Sn5 grains in Sn-3.0Ag-0.5Cu-xTiO2/Cu solder joints during the reflow process. J. Electron. Packag. 140(1), 011003 (2018)Google Scholar
  7. 7.
    X. Zhang, H. Xiaowu, X. Jiang, Y. Li, Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder. Appl. Phys. A 124(4), 1–13 (2018)Google Scholar
  8. 8.
    B. Liu, Y. Tian, J. Feng, C. Wang, Enhanced shear strength of CuSn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process. J. Mater. Sci. 52(4), 1943–1954 (2017)Google Scholar
  9. 9.
    S. Annuar, R. Mahmoodian, M. Hamdi, K.N. Tu, Intermetallic compounds in 3D integrated circuits technology: a brief review. Sci. Technol. Adv. Mater. 18(1), 1–11 (2017)Google Scholar
  10. 10.
    K.N. Tu, Y. Liu, M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology. Appl. Phys. Rev. 4(1), 011101 (2017)Google Scholar
  11. 11.
    M.L. Huang, F. Yang, Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate. Sci. Rep. 4(November), 7117 (2014)Google Scholar
  12. 12.
    J. Feng, C. Hang, Y. Tian, B. Liu, C. Wang, Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current. Sci. Rep. (2018).  https://doi.org/10.1038/s41598-018-20100-1 Google Scholar
  13. 13.
    J.Q. Huang, M.B. Zhou, S.B. Liang, X.P. Zhang, Size effects on the interfacial reaction and microstructural evolution of Sn-ball/Sn3.0Ag0.5Cu-paste/Cu joints in board-level hybrid BGA interconnection at critical reflowing temperature. J. Mater. Sci. Mater. Electron. 29(9), 7651–7660 (2018)Google Scholar
  14. 14.
    F. Sun, Y. Zhu, X. Li, Effects of micro solder joint geometry on interfacial IMC growth rate. J. Electron. Mater. 46(7), 4034–4038 (2017)Google Scholar
  15. 15.
    S. Wang, Y. Yao, X. Long, Size effect on microstructure and tensile properties of Sn3.0Ag0.5Cu solder joints. J. Mater. Sci. Mater. Electron. 28(23), 17682–17692 (2017)Google Scholar
  16. 16.
    H. Ma, R.A. Kunwar, J.C. Huang, Y. Wang, N. Zhao, H. Ma, Size effect on IMC growth induced by Cu concentration gradient and pinning of Ag3Sn particles during multiple reflows. Intermetallics 90(May), 90–96 (2017)Google Scholar
  17. 17.
    C.C. Chang, Y.W. Lin, Y.W. Wang, C.R. Kao, The effects of solder volume and Cu concentration on the consumption rate of Cu pad during reflow soldering. J. Alloys Compd. 492(1–2), 99–104 (2010)Google Scholar
  18. 18.
    T.L. Yang, J.J. Yu, W.L. Shih, C.H. Hsueh, C.R. Kao, Effects of silver addition on CuSn microjoints for chip-stacking applications. J. Alloys Compd. 605, 193–198 (2014)Google Scholar
  19. 19.
    A. Kunwar, B. Guo, S. Shang, P. Råback, Y. Wang, J. Chen, H. Ma, X. Song, N. Zhao, Roles of interfacial heat transfer and relative solder height on segregated growth behavior of intermetallic compounds in Sn/Cu joints during furnace cooling. Intermetallics 93, 186–196 (2018)Google Scholar
  20. 20.
    B. Guo, H. Ma, C. Jiang, Y. Wang, A. Kunwar, N. Zhao, M. Huang, Formation mechanism and kinetic analysis of the morphology of Cu6Sn5 in the spherical solder joints at the Sn/Cu liquid-solid interface during soldering cooling stage. J. Mater. Sci. Mater. Electron. 28(7), 5398–5406 (2017)Google Scholar
  21. 21.
    H. Xie, B. Deng, G. Du, Y. Fu, Y. He, H. Guo, G. Peng, Y. Xue, G. Zhou, Y. Ren, Y. Wang, R. Chen, Y. Tong, T. Xiao, X-ray biomedical imaging beamline at SSRF. J. Instrum. 8(8), C08003 (2013)Google Scholar
  22. 22.
    B. Guo, A. Kunwar, C. Jiang, N. Zhao, J. Sun, J. Chen, Y. Wang, M. Huang, H. Ma, Synchrotron radiation imaging study on the rapid IMC growth of SnxAg solders with Cu and Ni substrates during the heat preservation stage. J. Mater. Sci. Mater. Electron. 29(1), 589–601 (2018)Google Scholar
  23. 23.
    H. Ma, Y. Wang, J. Chen, A. Kunwar, H. Ma, N. Zhao, Geometrical outline evolution and size-inhibiting interaction of interfacial solder bubbles and IMCs during multiple reflows. Vacuum 145, 103–111 (2017)Google Scholar
  24. 24.
    N. Eustathopoulos, Wetting by liquid metals application in materials processing: the contribution of the grenoble group. Metals 5(1), 350–370 (2015)Google Scholar
  25. 25.
    W. Villanueva, W.J. Boettinger, G.B. McFadden, J.A. Warren, A diffuse-interface model of reactive wetting with intermetallic formation. Acta Mater. 60(9), 3799–3814 (2012)Google Scholar
  26. 26.
    F. Wang, A. Reiter, M. Kellner, J. Brillo, M. Selzer, B. Nestler, Phase-field modeling of reactive wetting and growth of the intermetallic Al2Au phase in the Al-Au system. Acta Mater. 146, 106–118 (2018)Google Scholar
  27. 27.
    A. Yakymovych, V. Sklyarchuk, Y. Plevachuk, B. Sokoliuk, Viscosity and electrical conductivity of the liquid Sn-3.8Ag-0.7Cu alloy with minor co admixtures. J. Mater. Eng. Perform. 25(10), 4437–4443 (2016)Google Scholar
  28. 28.
    J. Hektor, M. Ristinmaa, H. Hallberg, S.A. Hall, S. Iyengar, Coupled diffusion-deformation multiphase field model for elastoplastic materials applied to the growth of Cu6Sn5. Acta Mater. 108, 98–109 (2016)Google Scholar
  29. 29.
    M.S. Park, S.L. Gibbons, R. Arróyave, Phase-field simulations of intermetallic compound evolution in Cu/Sn solder joints under electromigration. Acta Mater. 61(19), 7142–7154 (2013)Google Scholar
  30. 30.
    B.S. Kirk, J.W. Peterson, R.H. Stogner, G.F. Carey, libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)Google Scholar
  31. 31.
    D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandié, MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009)Google Scholar
  32. 32.
    M.R. Tonks, D. Gaston, P.C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics phase field simulations. Comput. Mater. Sci. 51(1), 20–29 (2012)Google Scholar
  33. 33.
    D. Schwen, L.K. Aagesen, J.W. Peterson, M.R. Tonks, Rapid multiphase-field model development using a modular free energy based approach with automatic differentiation in MOOSE/MARMOT. Comput. Mater. Sci. 132, 36–45 (2017)Google Scholar
  34. 34.
    S. Shang, A. Kunwar, J. Yao, Y. Wang, N. Zhao, M. Huang, H. Ma, All-round suppression of Cu6Sn5 growth in Sn/Cu joints by utilizing TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 29(18), 15966–15972 (2018)Google Scholar
  35. 35.
    P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils. J. Appl. Phys. 86(12), 6746–6751 (1999)Google Scholar
  36. 36.
    R.G. Cox, The dynamics of the spreading of liquids on a solid-surface. Part 1. viscous-flow. J. Fluid Mech. 168, 169–194 (1986)Google Scholar
  37. 37.
    A. Ribes, C. Caremoli, Salome platform component model for numerical simulation. In 31st Annual International Computer Software and Applications Conference, vol 2—(COMPSAC 2007), pp. 553–564Google Scholar
  38. 38.
    C.H. Ma, R.A. Swalin, A study of solute diffusion in liquid tin. Acta Metall. 8(6), 388–395 (1960)Google Scholar
  39. 39.
    M.L. Huang, T. Loeher, A. Ostmann, H. Reichl, Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders. Appl. Phys. Lett. 86(18), 1–3 (2005)Google Scholar
  40. 40.
    M.J. Rizvi, H. Lu, C. Bailey, Modeling the diffusion of solid copper into liquid solder alloys. Thin Solid Films 517(5), 1686–1689 (2009)Google Scholar
  41. 41.
    O.M. Abdelhadi, L. Ladani, IMC growth of Sn-3.5Ag/Cu system: combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 537, 87–99 (2012)Google Scholar
  42. 42.
    M. Malinen, P. Raback, Elmer finite element solver for multiphysics and multiscale problems. Multiscale Model. Methods Appl. Mater. Sci. 19, 101–113 (2013)Google Scholar
  43. 43.
    U. Ayachit, A. Bauer, A. Chaudhary, D. DeMarle, B. Geveci, S. Jourdain, K. Lutz, P. Marion, R. Maynard, N. Shetty, Y. Yuan, The ParaView Guide (Kitware Inc., Clifton Park, 2008)Google Scholar
  44. 44.
    O.Y. Liashenko, F. Hodaj, Wetting and spreading kinetics of liquid Sn on Ag and Ag3Sn substrates. Scr. Mater. 127, 24–28 (2017)Google Scholar
  45. 45.
    N. Eustathopoulos, Progress in understanding and modeling reactive wetting of metals on ceramics. Curr. Opin. Solid State Mater. Sci. 9(4–5), 152–160 (2005)Google Scholar
  46. 46.
    D.G.A.L. Aarts, H.N.W. Lekkerkerker, H. Guo, G.H. Wegdam, D. Bonn, Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95, 1–4 (2005)Google Scholar
  47. 47.
    W. Villanueva, W.J. Boettinger, J.A. Warren, G. Amberg, Effect of phase change and solute diffusion on spreading on a dissolving substrate. Acta Mater. 57(20), 6022–6036 (2009)Google Scholar
  48. 48.
    F. Wang, B. Nestler, A phase-field study on the formation of the intermetallic Al2Au phase in the Al-Au system. Acta Mater. 95, 65–73 (2015)Google Scholar
  49. 49.
    E. Saiz, R.M. Cannon, A.P. Tomsia, Reactive spreading: adsorption, ridging and compound formation. Acta Mater. 48(18–19), 4449–4462 (2000)Google Scholar
  50. 50.
    R.L. Panton, J.W. Lee, L. Goenka, A. Achari, Simulation of void growth in molten solder bumps. J. Electron. Packag. 125(3), 329 (2003)Google Scholar
  51. 51.
    J.W. Xian, S.A. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, C.M. Gourlay, Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections. Acta Mater. 126, 540–551 (2017)Google Scholar
  52. 52.
    D. Frear, D. Grivas, J.W. Morris, The effect of Cu6Sn5 whisker precipitates in bulk 60Sn-40Pb solder. J. Electron. Mater. 16(3), 181–186 (1987)Google Scholar
  53. 53.
    F. Meng, S.A. Morin, A. Forticaux, S. Jin, Screw dislocation driven growth of nanomaterials. ACC Chem. Res. 46(7), 1616–1626 (2013)Google Scholar
  54. 54.
    M. Schaefer, R.A. Fournelle, J.I.N. Liang, Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control. Electron. Mater. 27i, 1167–1176 (1998)Google Scholar
  55. 55.
    K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders. J. Appl. Phys. 93(3), 1335–1353 (2003)Google Scholar
  56. 56.
    H. Ma, A. Kunwar, B. Guo, J. Sun, C. Jiang, Y. Wang, X. Song, N. Zhao, H. Ma, Effect of cooling condition and Ag on the growth of intermetallic compounds in Sn-based solder joints. Appl. Phys. A Mater. Sci. Process. 122(12), 1–10 (2016)Google Scholar
  57. 57.
    H.K. Kim, K.N. Tu, Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys. Rev. B 53(23), 16027–16034 (1996)Google Scholar
  58. 58.
    A.M. Gusak, K.N. Tu, Kinetic theory of flux-driven ripening. Phys. Rev. B. Condens. Matter Mater. Phys. 66(11), 1–14 (2002)Google Scholar
  59. 59.
    J. Kukelhan, Copper Tin Intermetallic Crystals and Their Role in the Formation of Microbridges between the Leads of Hand Reworked Fine Pitch Components (IPC-assocation Connect. Eletron. Ind., Lasvegas, 2010)Google Scholar
  60. 60.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Mechanical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations