Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19296–19307 | Cite as

Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling

  • Yi Qian
  • Zhengjun Yao
  • Haiyan Lin
  • Jintang Zhou
Article
  • 58 Downloads

Abstract

3D printing technology has attracted more and more interest in rapid manufacturing of components with complex shapes by pre-design. In the present work, various content of Li0.44Zn0.2Fe2.36O4 (LZFO) particles as reinforcement were added to polylactic acid (PLA) matrix for preparing 3D-printed composites by using fused deposition modeling (FDM). The structure and morphological characteristics were systematically examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Scanning electron microscopy (SEM). Furthermore, mechanical, thermal and microwave absorption properties of 3D-printed LZFO/PLA composites with different contents were investigated in detail. Tensile strength and Young’s modulus of the LZFO/PLA composite with 10 wt% LZFO content were remarkably improved than that of original PLA. Thermal stability of the composite with 5 wt% LZFO content was the best among the test specimens. Microwave absorption property suggested that the reflection loss (RL) of the composite with 20 wt% LZFO can reach − 32.4 dB at 3.8 GHz and − 31.8 dB at 16.1 GHz with the thickness of 6 mm, and the effective bandwidth corresponding to RL (≤ − 10 dB) reaches 2.1 GHz (3.1–5.2 GHz) and 1.8 GHz (14–15.8 GHz). Therefore, 3D-printed LZFO/PLA composites prepared by FDM can be an incredibly promising novel 3D printable microwave absorption candidate with other comprehensive properties. Moreover, microwave absorbing materials prepared by 3D printing technology especially using FDM may become the development trend of this kind of materials in the future.

Notes

Acknowledgement

This work was supported by the Foundation of Graduate Innovation Center in NUAA (kfjj20170601), National Natural Science Foundation of China (No. 51702158), and Fundamental Research Funds for the Central Universities (No. NS2017036).

Compliance with ethical standards

Conflicting interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Standard A. F2792, Standard Terminology for Additive Manufacturing Technologies (ASTM International, West Conshohocken, 2012)Google Scholar
  2. 2.
    Y. He, Y. Wu, J. Fu, Q. Gao, J. Qiu, Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis. 28, 1658–1678 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Zhu, T. Liu, F. Qian, T.Y.-J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Zhong, M. Yi, H.H. Bau, Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens. Actuators A 96, 59–66 (2002)CrossRefGoogle Scholar
  5. 5.
    S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, lowcost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7, e49365 (2012)CrossRefGoogle Scholar
  6. 6.
    M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012)CrossRefGoogle Scholar
  7. 7.
    G.N. Meloni, 3D printed and microcontrolled: the one hundred dollars scanningelectrochemical microscope. Anal. Chem. 89, 8643–8649 (2017)CrossRefGoogle Scholar
  8. 8.
    A.P. West, S.P. Sambu, D.W. Rosen, A process planning method for improving build performance in stereolithography. Comput. Aided Des. 33, 65–79 (2001)CrossRefGoogle Scholar
  9. 9.
    P. Dudek, FDM 3D printing technology in manufacturing composite elements. Arch. Metal. Mater. 58, 1415–1418 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Park, M.J. Tari, H.T. Hahn, Characterization of the laminated object manufacturing (LOM) process. Rapid Prototype J. 6, 36–50 (2000)CrossRefGoogle Scholar
  11. 11.
    J.P. Krut, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering. Assem. Autom. 23, 357–371 (2003)CrossRefGoogle Scholar
  12. 12.
    C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)CrossRefGoogle Scholar
  13. 13.
    H.J. Wu, G.L. Wu, L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Prashantha, F. Roger, Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. J. Macromol. Sci. 54, 24–29 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Wang, M. Jiang, Z.W. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective. Composite Part B 110, 442–458 (2017)CrossRefGoogle Scholar
  16. 16.
    L.E. Murr, S.M. Gaytan, F. Medin, H. Lopez, E. Martinez, B.I. Machad, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. 368, 1999–2032 (2010)CrossRefGoogle Scholar
  17. 17.
    F. Castles, D. Isakov, A. Lui, Q. Lei, C.E.J. Dancer, Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 6, 22714 (2016)CrossRefGoogle Scholar
  18. 18.
    E.C. Carola, G. Francesca, S. Francesca, F. Scalera, F. Montagna, A. Sannino, The feasibility of printing polylactic acid-nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J Appl. Polym. Sci. 134, 44656–44667 (2017)Google Scholar
  19. 19.
    M. Corey, R. Armando, T.P. Angel, C. Rocha, M. Liang, Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten–polycarbonate polymer matrix composite for space-based applications. J. Electron. Mater. 44, 2598–2607 (2015)CrossRefGoogle Scholar
  20. 20.
    F.D. Ning, W.L. Cong, J.J. Qiu, J.H. Wei, S.R. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composite Part B 80, 369–378 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Matthew, M. Jake, A. Zeeshan, A.E. Miller, M.R. Hartings, The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci. Technol. Adv. Mater. 17, 89–97 (2016)CrossRefGoogle Scholar
  22. 22.
    R.G. Yan, C.R. Zhang, Synthesis and characteristic of Li0.35Zn0.3Fe2.35O4 ferrite fiber using filter paper template. Mater Sci Eng B 189, 27–31 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)CrossRefGoogle Scholar
  24. 24.
    D.G. Li, C. Chen, W. Rao, W.H. Lu, Y.H. Xiong, Preparation and microwave absorption properties of polyaniline/Mn0.8Zn0.2Fe2O4 nanocomposite in 2–18 GHz. Mater. Sci. 25, 76–81 (2014)Google Scholar
  25. 25.
    P.J. Liu, Z.J. Yao, J.T. Zhou, Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide. Rsc Adv. 5, 93739–93748 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth. Met. 189, 34–41 (2014)CrossRefGoogle Scholar
  27. 27.
    J.T. Zhou, Z.J. Yao, Y.X. Chen, D.B. Wei, Y.B. Wu, T.S. Xu, Mechanical and thermal properties of graphene oxide/phenolic resin composite. Polym Compos. 34, 1245–1249 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Farah, D. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016)CrossRefGoogle Scholar
  29. 29.
    D.D.L. Chung, Composite Materials Science and Applications, 2nd edn. (Springer, London, 2010)CrossRefGoogle Scholar
  30. 30.
    D. Gay, S. Hoa, S. Tsai, Composite Materials Design and Applications, 4th edn. (CRC, Boca Raton, 2003)Google Scholar
  31. 31.
    D. Kinet, P. Megret, K.W. Goossen, L. Qiu, D. Heider, C. Caucheteur, Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors 14, 7394–7419 (2014)CrossRefGoogle Scholar
  32. 32.
    Q.T. Shubhra, A. Alam, M.A. Quaiyyum, Mechanical properties of polypropylene composites: a review. J Thermoplast. Compos. Mater. 26, 362–391 (2011)CrossRefGoogle Scholar
  33. 33.
    V.M.F. Evora, A. Shukla, Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater. Sci. Eng. A 361, 358–366 (2003)CrossRefGoogle Scholar
  34. 34.
    S.P. Qian, K.C. .Sheng, PLA toughened by bamboo cellulose nanowhiskers: role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 148, 59–69 (2017)CrossRefGoogle Scholar
  35. 35.
    P.Sun,G. Liu, D. Lv, D.J. Wang, Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. Rsc Adv. 5, 52916–52925 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Elahi, A. Shakoor, M. Irfan, N.A. Niaz, K. Mahmood, M.S. Awan, Effect of loading ZnNiCrFe2O4 nanoparticles on structural and microwave absorption properties of polyaniline nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9489–9495 (2016)CrossRefGoogle Scholar
  37. 37.
    Z.X. Li, X.H. Li, Y. Zong, G.G. Tan, Y. Sun, Y.Y. Lan, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017)CrossRefGoogle Scholar
  38. 38.
    P.J. Liu, L. Li, Z.J. Yao, M.M. Du, T.T. Yao, Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J. Mater. Sci. Mater. Electron. 27, 7776–7787 (2016)CrossRefGoogle Scholar
  39. 39.
    H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  40. 40.
    Z. Wang, H. Bi, P. Wang, M. Wang, Z. Liu, L. Shen, X. Liu, Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Feng, Y. Zong, Y. Sun, Y. Zhang, X.H. Li, Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018)CrossRefGoogle Scholar
  42. 42.
    P.J. Liu, Z.J. Yao, J.T. Zhou, Z.H. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave bsorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)CrossRefGoogle Scholar
  43. 43.
    H.J. Wu, S.H. Qu, K.J. Lin, Y.C. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyNanjingPeople’s Republic of China
  3. 3.Research Institute of Aerospace Special Materials & TechnologyBeijingPeople’s Republic of China
  4. 4.School of Materials Science and EngineeringSoutheastern UniversityNanjingPeople’s Republic of China

Personalised recommendations