Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19238–19244 | Cite as

Effect of Yb2O3 content on dielectric and energy-storage properties of lead-free niobate glass–ceramics

  • Bo Li
  • Dezhi Wang
  • Guohua Chen
  • Xiao Liu
Article
  • 52 Downloads

Abstract

(100 − x) (14.4SrO–17.6BaO–32Nb2O5–36B2O3)–xYb2O3 (x = 0, 0.5, 1.0, 1.5, and 2.0%) glass–ceramic composites were synthesized through melt-quenching followed by controlled crystallization techniques. The effects of the Yb2O3 addition on the microstructure, phase evolution, and dielectric properties were investigated. The results show that the addition of Yb2O3 to the glass–ceramics could change their dielectric properties and energy-storage densities. The optimal dielectric constant of 98.3 and maximum breakdown dielectric strength of 1398 kV/cm were obtained for the glass–ceramic with 1.0% Yb2O3 heated at 850 °C for 3 h. The optimized composition exhibited a high energy-storage density of 8.5 J/cm3, making it a promising candidate for high-energy-density capacitors.

Notes

Acknowledgements

Financial supports of Guangxi Key Laboratory of Information Materials (Grant No. 171002-Z) are gratefully acknowledged by the authors.

References

  1. 1.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)CrossRefGoogle Scholar
  2. 2.
    J.H. Liu, H.T. Wang, B. Shen et al., Significantly enhanced energy-storage density in the strontium barium niobate-based/titanate-based glass-ceramics. J. Am. Ceram. Soc. 100, 506–510 (2017)CrossRefGoogle Scholar
  3. 3.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29, 253–258 (1996)CrossRefGoogle Scholar
  4. 4.
    B. Rangarajan, B. Jones, T. Shrout et al., Barium/lead-rich high permittivity glass–ceramics for capacitor applications. J. Am. Ceram. Soc. 90, 784–788 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Xue, S. Liu, W. Zhang et al., Improved discharged property for (BaO, Na2O)–Nb2O5–SiO2, glass ceramics by La2O3, addition. Ceram. Int. 41, 441–446 (2015)CrossRefGoogle Scholar
  6. 6.
    T.Y. Liu, G.H. Chen, J. Song et al., Crystallization kinetics and dielectric characterization of CeO2–added SrO–BaO–Nb2O5–B2O3–SiO2 glass-ceramics. Ceram. Int. 39, 5553–5559 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Song, G.H. Chen, C.L. Yuan et al., Effect of the Sr/Ba ratio on the microstructures and dielectric properties of SrO–BaO–Nb2O5–B2O3 glass–ceramics. Mater. Lett. 117, 7–9 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Zhang, J. Wang, S. Xue et al., Effect of La2O3 additive on the dielectric properties of barium strontium titanate glass–ceramics. J. Mater. Sci.: Mater. Electron. 25, 4145–4149 (2014)Google Scholar
  9. 9.
    S. Xiao, S. Xiu, S. Xue et al., Crystallization behavior and dielectric properties of K2O–SrO–Nb2O5–B2O3–Al2O3–SiO2 glass-ceramic for energy storage. J. Alloys Compd. 648, 745–750 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Luo, J. Du, Q. Tang et al., Lead sodium niobate glass-ceramic dielectrics and internal electrode structure for high energy storage density capacitors. IEEE Trans. Electron. Dev. 55, 3549–3554 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Zeng, X. Qin, S. Jiang et al., Effect of BaF2 addition on crystallization kinetics and dielectric properties of B2O3–Nb2O5–SrO–BaO glass ceramics. J. Am. Ceram. Soc. 94, 469–473 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Zhou, Q. Zhang, J. Luo et al., Structural and dielectric characterization of GdO–added BaO-NaO-NbO-SiO glass–ceramic composites. Scr. Mater. 65, 296–299 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Liu, S. Xue, B. Shen et al., Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers. Appl. Phys. Lett. 40, 072906 (2015)Google Scholar
  14. 14.
    T.Y. Liu, G.H. Chen, J. Song, C.L. Yuan, Crystallization kinetics and dielectric characterization of CeO2–added BaO–SrO–Nb2O5–B2O3–SiO2 glass-ceramics. Ceram. Inter. 39, 5553–5559 (2013)CrossRefGoogle Scholar
  15. 15.
    H.T. Wang, J.H. Liu, J.H. Zhai, Z.B. Pan, B. Pan, Effects of Sr substitution for Ba on dielectric and energy-storage density of SrO–BaO–K2O–Nb2O5–SiO2 glass–ceramics. J. Eur. Ceram. Soc. 37, 3917–3925 (2017)CrossRefGoogle Scholar
  16. 16.
    S.X. Xue, J.W. Wang, S.H. Liu et al., Effect of the Ba/Na ratio on the microstructure and dielectric properties of (BaO, Na2O)–Nb2O5–SiO2 glass-ceramics. Ceram. Int. 40, 7495–7499 (2014)CrossRefGoogle Scholar
  17. 17.
    S.X. Xue, J.W. Zhai, S. Xiao et al., Improved dielectric breakdown strength and suppressed energy loss in niobate glass–ceramics crystallized by microwave process. Mater. Lett. 190, 154–156 (2017)CrossRefGoogle Scholar
  18. 18.
    H.T. Wang, J.H. Liu, J.W. Zhai et al., Effect of K2O content on breakdown strength and energy–storage density in K2O–BaO–Nb2O5–SiO2 glass-ceramics. Ceram. Int. 43, 4183–4187 (2017)CrossRefGoogle Scholar
  19. 19.
    H.T. Wang, J.H. Liu, J.Z. Zhai et al., Effect of crystallization temperature on dielectric and energy-storage properties in SrO–Na2O–Nb2O5–SiO2 glass-ceramics. Ceram. Int. 43, 8898–8904 (2017)CrossRefGoogle Scholar
  20. 20.
    H.T. Wang, J.H. Liu, J.W. Zhai et al., Enhanced energy storage density and discharge efficiency in the strontium sodium niobate-based glass-ceramics. J. Alloys Compd. 687, 280–285 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Chen, Y. Zhang, C. Deng et al., Effect of the Ba/Ti ratio on the microstructures and dielectric properties of barium titanate-based glass-ceramics. J. Am. Ceram. Soc. 92, 1350–1353 (2009)CrossRefGoogle Scholar
  22. 22.
    T.Y. Liu, G.H. Chen, J. Song et al., Crystallization kinetics and dielectric characterization of CeO2–added BaO–SrO–Nb2O5–B2O3–SiO2 glass-ceramics. Ceram. Int. 39, 5553–5559 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, Q.M. Zhang, J. Luo et al., Structural and dielectric characterization of Gd2O3–added BaO–Na2O–Nb2O5–SiO2 glass-ceramic composites. Scr. Mater. 65, 296–299 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Wang, Y. Zhang, T. Ma et al., Influence of AlF3 concentration on microstructures and energy storage properties of Barium Strontium titanate glass ceramics. Int. J. Appl. Ceram. Technol. 10, 301–306 (2013)CrossRefGoogle Scholar
  25. 25.
    G.H. Chen, T.Y. Liu, C.L. Yuan et al., Effect of BaF2 addition on crystallization kinetics and electrical properties of BaO–SrO–Nb2O5–B2O3–SiO2 glass-ceramics. J. Non-Cryst. Solids 378, 241–246 (2013)CrossRefGoogle Scholar
  26. 26.
    X.R. Wang, Y. Zhang, T. Ma et al., Effects of MnO2 concentration on dielectric properties of barium strontium titanate glass ceramics. Ceram. Int. 38, S57–S60 (2012)CrossRefGoogle Scholar
  27. 27.
    A.K. Yadav, C. Gautam, P. Singh, Crystallization kinematics and dielectric behavior of (Ba, Sr)TiO3 borosilicate glass ceramics. N. J. Glass Ceram. 2, 126–131 (2012)CrossRefGoogle Scholar
  28. 28.
    P. Lu, Y. Zheng, J. Cheng et al., Effect of La2O3, addition on crystallization and properties of Li2 O–Al2O3–SiO2 glass-ceramics. Ceram. Int. 39, 8207–8212 (2013)CrossRefGoogle Scholar
  29. 29.
    X. Wang, Y. Zhang, X. Song et al., Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc. 32, 559–567 (2012)CrossRefGoogle Scholar
  30. 30.
    A.L. Young, G.E. Hilmas, S.C. Zhang et al., Mechanical vs. electrical failure mechanisms in high voltage high energy density multilayer ceramic capacitors. J. Mater. Sci. 42, 5613–5619 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  3. 3.Key Laboratory of Ministry of Education for Non-ferrous Materials Science and EngineeringChangshaChina
  4. 4.Guilin Electrical Equipment Scientific Research InstituteGuilinChina

Personalised recommendations