Advertisement

Strongly coupled Ag/TiO2 heterojunction: from one-step facile synthesis to effective and stable ethanol sensing performances

  • Zhong Li
  • Azhar Ali Haidry
  • YouSong Liu
  • LinChao Sun
  • LiJuan Xie
  • Qawareer Fatima
  • ZhengJun Yao
Article

Abstract

The development of cost-effective simple methods to fabricate nanocomposites based on metal oxide (MOX) supported noble metals with improved performance is extremely demanding, specifically in the field of nanomaterial and gas sensor. In this this work, a facile one-step hydrothermal strategy to synthesize strongly-coupled TiO2 nanosheets supported with Ag nanoparticles (Ag/TiO2 heterojunction nanocomposites) is proposed, which is proved of high effectiveness for sensor applications. The structure and morphology of synthesized nanocomposites was performed by XRD, XPS, HRTEM, UV–Vis and PL spectroscopy. Compared to pristine TiO2, the sensors based on such Ag/TiO2 heterojunction nanocomposites show excellent ethanol gas sensing properties in terms of high sensitivity (8.5 towards 100 ppm), selectivity against other gases (methanal, acetone, and methanol), short response/recover times (9/10 s), and high stability (present stable response after 30 days). Such performance demonstrates this material is promising for practical gas sensor applications.

Notes

Acknowledgements

This work was supported by “Priority Academic Program Development of Jiangsu Higher Education Institutions” (PAPD), “Natural Science Foundation of Jiangsu Province” (BK20170795), “Six Talent Peaks Project of Jiangsu Province” (YPC16005-PT), “Postgraduate Research and Practice Innovation Program of Jiangsu Province” (KYCX_0255).

References

  1. 1.
    A.T. Bell, The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003)CrossRefGoogle Scholar
  2. 2.
    H.L. Tang, Y. Su, B.S. Zhang, A.F. Lee, M.A. Isaacs, K. Wilson, L. Li, Y.G. Ren, J.H. Huang, M. Haruta, B.T. Qiao, X. Liu, C.Z. Jin, D.S. Su, J.H. Wang, T. Zhang, Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017)CrossRefGoogle Scholar
  3. 3.
    G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp (eds.), Handbook of heterogeneous catalysis, 2nd edn. (Wiley, New York, 2008), vol. 8, p. 4270Google Scholar
  4. 4.
    X. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin, H. Cheng, J.M. Chen, J.F. Lee, T.S. Lin, Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012)CrossRefGoogle Scholar
  5. 5.
    M.R. Alenezi, S.J. Henley, G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)CrossRefGoogle Scholar
  6. 6.
    V.K. Tomer, S. Duhan, Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J. Mater. Chem. A 4, 1033–1043 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, X.H. Liu, S.H. Wu, B.Q. Cao, S.H. Zheng, One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sens. Actuators B 169, 61–66 (2012)CrossRefGoogle Scholar
  8. 8.
    Z.Y. Duan, G. Henkelman, CO oxidation at the Au/TiO2 boundary: the role of the Au/Ti5c site. ACS Catal. 5, 1589–1595 (2015)CrossRefGoogle Scholar
  9. 9.
    S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978)CrossRefGoogle Scholar
  10. 10.
    J. Liu, Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 3, 934–948 (2011)CrossRefGoogle Scholar
  11. 11.
    W. Zeng, T.M. Liu, D.J. Liu, Formaldehyde gas sensing property and mechanism of TiO2–Ag nanocomposite. Phys. B 405, 4235–4239 (2010)CrossRefGoogle Scholar
  12. 12.
    D.M. Tobaldi, S.G. Leonardi, R.C. Pullar, M.P. Seabra, G. Nerib, J.A. Labrincha, Sensing properties and photochromism of Ag–TiO2 nano-heterostructures. J. Mater. Chem. A 4, 9600–9613 (2016)CrossRefGoogle Scholar
  13. 13.
    X.H. Liu, T.T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017)CrossRefGoogle Scholar
  14. 14.
    Z.C. Zhang, Y. Liu, B. Chen, Y. Gong, L. Gu, Z.X. Fan, N.L. Yang, Z.C. Lai, Y. Chen, J. Wang, Y. Huang, M. Sindoro, W.X. Niu, B. Li, Y. Zong, Y.H. Yang, X. Huang, F.W. Huo, W. Huang, H. Zhang, Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 28, 10282–10286 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Widmann, R.J. Behm, Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. J. Catal. 357, 263–273 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, L.X. Liu, C.M. Meng, Y. Zhou, Z. Gao, X.H. Li, X.X. Cao, L. Xu, W.J. Zhu, A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures. Sci. Rep. 6, 33092 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Gu, Y.Q. Jiao, X.G. Zhou, A.P. Wu, B. Buhe, H.G. Fu, Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Res. 11, 126–141 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E.K. Girija, D.P. Padiyan, Effect of surfactant on the morphology of ZnO/Al:ZnO nanostructures and their ethanol sensing applications at room temperature Surf. Rev. Lett. 23, 1–11 (2016)Google Scholar
  19. 19.
    P.G. Hu, G.J. Du, W.J. Zhou, J.J. Cui, J.J. Lin, H. Liu, D. Liu, J.Y. Wang, S.W. Chen, Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl. Mater. Interfaces 2, 3263–3269 (2010)CrossRefGoogle Scholar
  20. 20.
    A.A. Haidry, A. Ebach-Stahl, B. Saruhan, Effect of Pt/TiO2 interface on room temperature hydrogen sensing performance of memristor type Pt/TiO2/Pt structure. Sens. Actuators B 253, 1043–1054 (2017)CrossRefGoogle Scholar
  21. 21.
    A.A. Haidry, P. Durina, M. Tomasek, J. Gregus, P. Schlosser, M. Mikula, M. Truchly, T. Roch, T. Plecenik, A. Pidik, M. Zahoran, P. Kus, A. Plecenik, Effect of post-deposition annealing treatment on the structural, optical and gas sensing properties of TiO2 thin films, Key Eng. Mater. 510–511, 467–474 (2012)CrossRefGoogle Scholar
  22. 22.
    Z. Li, A.A. Haidry, T. Wang, Z.J. Yao, Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure. Appl. Phys. Lett. 111, 032104 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Kwon, Y. Lee, S. Hwang, J. Kim, Highly-sensitive H2 sensor operating at room temperature using Pt/TiO2 nanoscale Schottky contacts. Sens. Actuators B 241, 985–992 (2017)CrossRefGoogle Scholar
  24. 24.
    X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Ag nanoparticles modified TiO2 spherical heterostructures with enhanced gas-sensing performance. Sens. Actuators B 155, 716–721 (2011)CrossRefGoogle Scholar
  25. 25.
    N. Bahadur, K. Jain, R. Pasricha, S. Govind, Chand, Selective gas sensing response from different loading of Ag in sol-gel mesoporous titania powders. Sens. Actuators B 159, 112–120 (2011)CrossRefGoogle Scholar
  26. 26.
    P.P. Subha, K. Hasna, M.K. Jayaraj, Surface modification of TiO2 nanorod arrays by Ag nanoparticles and its enhanced room temperature ethanol sensing properties. Mater. Res. Express 4, 105037 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Zhu, C.T. Kao, R.J. Wu, A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl. Surf. Sci. 320, 348–355 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.K. Lai, Y.C. Chen, H.F. Zhuang, C.J. Lin, A facile method for synthesis of Ag/TiO2 nanostructures. Mater. Lett. 62, 3688–3690 (2008)CrossRefGoogle Scholar
  29. 29.
    Z. Li, A.A. Haidry, B. Gao, T. Wang, Z.J. Yao, The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl. Surf. Sci. 412, 638–647 (2017)CrossRefGoogle Scholar
  30. 30.
    T. Roch, E. Dobročka, M. Mikula, A. Pidík, P. Durina, A.A. Haidry, T. Plecenik, M. Truchlý, B. Grancic, A. Plecenik, P. Kúš, Strong biaxial texture and polymorph nature in TiO2 thin film formed by ex-situ annealing on c-plane Al2O3 surface. J. Cryst. Growth 338, 118–124 (2012)CrossRefGoogle Scholar
  31. 31.
    A.A. Mosquera, J.M. Albella, V. Navarro, D. Bhattacharyya, J.L. Endrino, Effect of silver on the phase transition and wettability of titanium oxide films. Sci. Rep. 6, 32171 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Garcia-Serrano, E. Gomez-Hernandez, M. Ocampo-Fernandez, U. Pal, Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles. Curr. Appl. Phys. 9, 1097–1105 (2009)CrossRefGoogle Scholar
  33. 33.
    M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 189, 258–263 (2007)CrossRefGoogle Scholar
  34. 34.
    J. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D.J. Pochan, S.I. Shah, Antibacterial properties of silver-doped titania. Small 3, 799–803 (2007)CrossRefGoogle Scholar
  35. 35.
    W.E. Slink, P.B. DeGroot, Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid. J. Catal. 68, 423–432 (1981)CrossRefGoogle Scholar
  36. 36.
    J. Yu, T. Ma, G. Liu, B. Cheng, Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Trans. 40, 6635–6644 (2011)CrossRefGoogle Scholar
  37. 37.
    H.L. Ran, J.J. Fan, X.L. Zhang, J. Mao, G.S. Shao, Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Appl. Surf. Sci. 430, 415–423 (2018)CrossRefGoogle Scholar
  38. 38.
    H.Y. Jiang, H.X. Dai, J.G. Deng, Y.X. Liu, L. Zhang, K.M. Ji, Porous F-doped BiVO4: synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination. Solid State Sci. 17, 21–27 (2013)CrossRefGoogle Scholar
  39. 39.
    A.A. Haidry, L. Sun, B. Saruhan, A. Plecenik, T. Plecenik, H. Shen, Z. Yao, Cost-effective fabrication of polycrystalline TiO2 with tunable n/p response for selective hydrogen monitoring. Sens. Actuators B 274, 10–21 (2018)CrossRefGoogle Scholar
  40. 40.
    R. Zhang, T. Zhang, T.T. Zhou, L.L. Wang, Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol. Sens. Actuators B 256, 479–487 (2018)CrossRefGoogle Scholar
  41. 41.
    C. Liu, H.B. Lu, J.N. Zhang, J.Z. Gao, G.Q. Zhu, Z.B. Yang, F. Yin, C.L. Wang, Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sens. Actuators B 263, 557–567 (2018)CrossRefGoogle Scholar
  42. 42.
    L. Huang, T.M. Liu, H.J. Zhang, W.W. Guo, W. Zeng, Hydrothermal synthesis of different TiO2 nanostructures: structure, growth and gas sensor properties. J. Mater. Sci. 23, 2024–2029 (2012)Google Scholar
  43. 43.
    J. Zhang, X.H. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Key Laboratory of Materials Preparation and Protection for Harsh EnvironmentMinistry of Industry and Information TechnologyNanjingChina
  3. 3.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations