Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19200–19206 | Cite as

Nickel deposition on Kevlar fabric modified with aminopropyltrimethoxysilane in supercritical fluid via electroless plating

  • Guanghong Zheng
  • Ren Jianhua
  • Ronghui Guo
Article
  • 16 Downloads

Abstract

Kevlar fabric was pretreated with aminopropyltrimethoxysilane (APTMS) through supercritical carbon dioxide (scCO2) process before electroless nickel plating. APTMS pretreated Kevlar fibers were characterized by element distribution and contact angle. Deposition rate, deposit weight, surface morphology, crystal structure, surface resistance, electromagnetic interference shielding effectiveness (SE) and magnetic properties of electroless nickel plated Kevlar fabric were investigated. The results show that APTMS is evenly covered on Kevlar fibers after pretreatment. Nickel coatings on the Kevlar fibers are dense and uniform after nickel plating. Surface resistance and electromagnetic interference SE of the nickel plated Kevlar fabric via scCO2 processes arrives at 1.33 Ω/sq and 13–19 dB at frequencies ranging from 2 to 18 GHz. The saturation magnetization of Ni coated Kevlar fabric reaches 207.52 memu/g.

Notes

Acknowledgements

This work was financially supported by The National Natural Science Foundation of China (No. 51203099) and Chengdu Science and Technology Bureau (No. 2015-HM01-00380-SF).

References

  1. 1.
    A. Hazarika, B.K. Deka, D.Y. Kim, ACS Appl. Mater. Interfaces 9(4), 36311–36319 (2017)CrossRefGoogle Scholar
  2. 2.
    W.B. Sun, Y.Z. Gu, Z.J. Yang, J. Appl. Polym. Sci. 135(19), 46269 (2018)CrossRefGoogle Scholar
  3. 3.
    H.W. Pang, R.C. Bai, Q.S. Shao, Appl. Surf. Sci. 359, 280–287 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Irfan, S. Perero, M. Miola, Cellulose 24(5), 2331–2345 (2017)CrossRefGoogle Scholar
  5. 5.
    T.D.A. Jones, A. Bernassau, D. Flynn, Ultrason. Sonochem. 8(5), 056106 (2018)Google Scholar
  6. 6.
    Y.X. Lu, S.H. Jiang, Y.M. Huang, Surf. Coat. Technol. 204, 2829 (2010)CrossRefGoogle Scholar
  7. 7.
    H.D. Zheng, J. Zhang, B. Du, Q.F. Wei, L.J. Zheng, Fiber Polym. 16(5), 1134–1141 (2015)CrossRefGoogle Scholar
  8. 8.
    H.W. Pang, R.C. Bai, Q.S. Shao, Y.F. Gao, A.J. Li, Appl. Surf. Sci. 359, 280–287 (2015)CrossRefGoogle Scholar
  9. 9.
    W.C. Wang, R.Y. Li, M. Tian, L. Liu, ACS Appl. Mater. Interfaces 5, 2062–2069 (2013)CrossRefGoogle Scholar
  10. 10.
    L.H. Peng, R.H. Guo, J.W. Lan, S.X. Jiang, S.J. Lin, Appl. Surf. Sci. 386, 151–159 (2016)CrossRefGoogle Scholar
  11. 11.
    R.H. Guo, S.Q. Jiang, Y.D. Zheng, J.W. Lan, J. Appl. Polym. Sci. 127(5), 4186–4193 (2013)CrossRefGoogle Scholar
  12. 12.
    Z.W. Shi, A.V. Walker, Langmuir 27, 6932 (2011)CrossRefGoogle Scholar
  13. 13.
    A.L. Mohameda, M.E. Rafikb, M. Moller, Carbohyd. Polym. 98, 1095 (2013)CrossRefGoogle Scholar
  14. 14.
    S.J. Xu, D.P. Shen, P.Y. Wu, J. Nanopart. Res. 15, 1577 (2013)CrossRefGoogle Scholar
  15. 15.
    L.H. Peng, R.H. Guo, J.W. Lan, J. Ind. Text. 47(5), 883–896 (2018)CrossRefGoogle Scholar
  16. 16.
    R.H. Guo, X.L. Jing, L.H. Peng, J. Mater. Sci.: Mater. Electron. 28(24), 18936–18943 (2017)Google Scholar
  17. 17.
    R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, J. Mater. Sci.: Mater. Electron. 20, 735–740 (2009)Google Scholar
  18. 18.
    R.H. Guo, S.X. Jiang, C.W.M. Yuen, M.C.F. Ng, J.W. Lan, Y.L. Yueng, S.J. Lin, Fiber Polym. 14(5), 752–758 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chengdu Textile CollegeChengduChina
  2. 2.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina

Personalised recommendations