Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19164–19179 | Cite as

Ferroelectric and magneto-dielectric properties of yttrium doped BaTiO3–CoFe2O4 multiferroic composite

  • Mehraj Ud Din Rather
  • Rubiya Samad
  • Basharat Want


Multiferroic composites of ferroelectric and ferrite phases having general formula xCoY0.1Fe1.9O4—(1 − x) Ba0.95Y0.05TiO3 (where x = 0.05, 0.1 and 0.15) were prepared using the conventional solid-state reaction method. X-ray diffraction studies were done to confirm the presence of constituent phases. The microstructural analysis revealed an increase in density with the increase of ferrite content in the ferroelectric matrix. Dielectric studies of the composites, in the temperature range 100–550 K revealed two ferroelectric phase transitions. Variation of dielectric constant and dielectric loss with frequency in the range of 20–3 MHz was carried out at room temperature. The low-temperature dc conductivity behaviour follows Motts law, confirming the variable range hopping mechanism in all the composites. All the composites showed P–E and M–H hysteresis loops; which confirm the ferroelectric and ferrimagnetic nature of the composites. At temperatures below 173 K, an increase in coercivity and saturation magnetization is observed due to frozen spins. The coupling between ferroelectric and ferromagnetic ordering was confirmed by room temperature magneto-dielectric studies. The decrease in real part of dielectric constant and dielectric loss was observed with an increase in the applied magnetic field. An appreciable increase in percentage magneto-capacitance was observed at lower frequencies and with the increase of ferrite content in the composites. The magneto-electric coupling coefficient was calculated by using the expansion of the thermodynamic potential φ (for x = 0.15) and was found to be 3.397 × 10−2 (emu/g)−2.



The authors are thankful to Ms. Rosy Rahman, Ph.D Research Scholar, IIT Kharagpur for providing XRD and FESEM facility. The authors also thank authorities of the University of Kashmir for providing facility of the vibrating sample magnetometer facility (Micro Sense EZ9 VSM) for magnetic measurements.


  1. 1.
    C. Schmitz-Antoniak, D. Schmitz, P. Borisov, F.M. De Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, H. Wende, Nat. Commun. 4, 2051 (2013)CrossRefGoogle Scholar
  2. 2.
    B. Li, C. Wang, G. Dou, Cryst. Eng. Comm. 15(11), 2147–2156 (2013)CrossRefGoogle Scholar
  3. 3.
    K.C. Verma, R.K. Kotnala, N.S. Negi, Appl. Phys. Lett. 92(15), 152902 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Khomskii, Physics 2, 20 (2009)CrossRefGoogle Scholar
  5. 5.
    G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463–2485 (2009)CrossRefGoogle Scholar
  6. 6.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103(1), 031101 (2008)CrossRefGoogle Scholar
  7. 7.
    M.U.D. Rather, R. Samad, B. Want, J. Electron. Mater. 47(3), 2143–2154 (2018)CrossRefGoogle Scholar
  8. 8.
    K. Kageyama, J. Takahashi, J. Am. Ceram. Soc. 87(8), 1602–1605 (2004)CrossRefGoogle Scholar
  9. 9.
    K.D. Schomann, Appl. Phys. 6(1), 89–92 (1975)CrossRefGoogle Scholar
  10. 10.
    Y.H. Tang, X.M. Chen, Y.J. Li, X.H. Zheng, Mater. Sci. Eng. B 116(2)), 150–155 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Sua, Y. Yang, J. Mater. Chem. C 2(14), 2545–2551 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40(7), 9027–9036 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Etier, V.V. Shvartsman, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Ferroelectrics 448(1), 77–85 (2013)CrossRefGoogle Scholar
  14. 14.
    M.T. Buscaglia, M. Viviani, V. Buscaglia, C. Bottino, P. Nanni, J. Am. Ceram. Soc. 85(8), 1569–1575 (2002)CrossRefGoogle Scholar
  15. 15.
    P. Yongping, Y. Wenhu, C. Shoutian, J. Rare Earths 25, 154–157 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Franco Jr., H.V.S. Pessoni, T.E.P. Alves, Mater. Lett. 208, 115–117 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Sarkar, B. Dalal, V. Dev Ashok, K. Chakrabarti, A. Mitra, S.K. De, J. Appl. Phys. 115(12), 123908 (2014)CrossRefGoogle Scholar
  18. 18.
    N. Pulphol, R. Muanghlua, S. Niemcharoen, N. Vittayakorn, W. Vittayakorn, Ferroelectrics 488(1), 170–180 (2015)CrossRefGoogle Scholar
  19. 19.
    K.C. Verma, S. Singh, S.K. Tripathi, R.K. Kotnala, J. Appl. Phys. 116(12), 124103 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Samad, M.U.D. Rather, B. Want, J. Alloys Compd. 715, 43–52 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Fechner, S. Ostanin, I. Mertig, Phys. Rev. B 77(9), 094112 (2008)CrossRefGoogle Scholar
  22. 22.
    P. Ren, Q. Wang, X. Wang, L. Wang, J. Wang, H. Fan, G. Zhao, Mater. Lett. 174, 197–200 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Chena, Z. Yu, V.M. Ferreira, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 16(10)), 1051–1056 (1996)CrossRefGoogle Scholar
  24. 24.
    B. Want, M.U.D. Rather, R.Samad, J. Mater. Sci. 27(6), 5860–5866 (2016)Google Scholar
  25. 25.
    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, Adv. Funct. Mater. 14(9), 920–926 (2004)CrossRefGoogle Scholar
  26. 26.
    J.C. Maxwell, Electricity and Magnetism (Oxford University Press), Oxford, 1973)Google Scholar
  27. 27.
    K.W. Wagner, Ann. Phys. 40, 818 (1993)Google Scholar
  28. 28.
    C.G. Koops, Phys. Rev. B 83(1), 121 (1951)CrossRefGoogle Scholar
  29. 29.
    T.G. Lupeiko, I.B. Lopatina, I.V. Kozyrev, L.A. Derbaremdiker, Inorg. Mater. 28(3), 481–485 (1992)Google Scholar
  30. 30.
    V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, J. Polym. Res. 19(3), 9838 (2012)CrossRefGoogle Scholar
  31. 31.
    D. Shana, Y.F. Qua, J.J. Song, Solid State Commun. 141(2), 65–68 (2007)CrossRefGoogle Scholar
  32. 32.
    K.K. Chi, Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes (2004)Google Scholar
  33. 33.
    R. Maier, J.L. Cohn, J.J. Neumeier, L.A. Bandersky, Appl. Phys. Lett. 78(17), 2536–2538 (2001)CrossRefGoogle Scholar
  34. 34.
    S.K. Rout, P.K. Barhai, E. Sinha, Phase Transit. 81(1), 129–137 (2008)CrossRefGoogle Scholar
  35. 35.
    Q. Sun, J. Hu, Q. Gu, K. Bian, J. Wang, K. Xiong, K. Zhu, Mater. Tech. 31(14), 854–859 (2016)CrossRefGoogle Scholar
  36. 36.
    H.R. Rukmini, R.N.P. Choudary, D.L. Prabhakara, J. Phys. Chem. Solids 61, 1735–1743 (2000)CrossRefGoogle Scholar
  37. 37.
    E.J. Verwey, J.H. de Boer, Rec. Trav. Chim. Pahys. Bas. 55(6), 531–540 (1936)CrossRefGoogle Scholar
  38. 38.
    R.S. Devan, Y.D. Kolekar, B.K. Chougule, J. Phys.:Condens. Matter 18, 9809–9821 (2006)Google Scholar
  39. 39.
    R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Ceram. Int. 40(40), 6165–6170 (2014)CrossRefGoogle Scholar
  40. 40.
    R.S. Vemuri, K. Kamala Bharathi, S.K. Gullapalli, C.V. Ramana, ACS Appl. Mater. Interfaces 2(9), 2623–2628 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Kamala Bharathi, G. Markandeyulu, C.V. Ramana, J. Electrochem. Soc. 158(3), G71–G78 (2011)CrossRefGoogle Scholar
  42. 42.
    A. Azam, A. Jawad, A.S. .Ahmed, M. Chaman, A.H. Naqvi, J. Alloys. comp. 509(6), 2909–2913 (2011)CrossRefGoogle Scholar
  43. 43.
    I.C. Nlebedim, K.W. Dennis, R.W. McCallum, D.C. Jiles, J. Appl. Phys. 115(17), 17A519 (2014)CrossRefGoogle Scholar
  44. 44.
    N.F. Mott, Phil. Mag. 19(160), 835–852 (1969)CrossRefGoogle Scholar
  45. 45.
    N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 2(11), 115021 (2012)CrossRefGoogle Scholar
  46. 46.
    D.K. Pradhan, R.N.P. Chowdhury, T.K. Nath, Appl. Nanosci. 2(3), 261–273 (2012)CrossRefGoogle Scholar
  47. 47.
    H. Yang, G. Zhang, Y. Lin, J. Alloys Compd. 644, 390–397 (2015)CrossRefGoogle Scholar
  48. 48.
    V.L. Mathe, A.D. Sheikh, G. Srinivasan, J. Magn. Magn.Mater. 324(5), 695–703 (2012)CrossRefGoogle Scholar
  49. 49.
    B. Van den, D.R. Terrell, R.A.J. Born, H.F.J. Giller, J. Mater. Sci. 9(10), 1705–1709 (1974)CrossRefGoogle Scholar
  50. 50.
    G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev. B 67(1), 014418 (2003)CrossRefGoogle Scholar
  51. 51.
    R.C. Kambalea, P.A. Shaikha, C.H. Bhosalea, K.Y. Rajpurea, Y.D. Kolekarb, J. Alloys Compd. 489(1), 310–315 (2010)CrossRefGoogle Scholar
  52. 52.
    N. Preksha, N. Dhruv, S. Solanki, R.B. Kulkarni, Jotania, AIP Conf. Proc. 1728(1), 020074 (2016)Google Scholar
  53. 53.
    Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, K.W. Dennis, J. Appl. Phys. 99(8), 08R102 (2006)CrossRefGoogle Scholar
  54. 54.
    Y. Melikhov, J.E. Snyder, C.C. Lo, P.N. Matlage, S.H. Song, K.W. Dennis, D.C. Jiles, IEEE Trans. Magn. 42(10), 2861–2863 (2006)CrossRefGoogle Scholar
  55. 55.
    N. Ranvah, I.C. Nlebedim, Y. Melikhov, J.E. Snyder, P.I. Williams, A.J. Moses, D.C. Jiles, IEEE Trans. Magn. 45(10), 4261–4264 (2009)CrossRefGoogle Scholar
  56. 56.
    K. Maaz, M. Usman, S. Karim, A. Mumtaz, S.K. Hasanain, M.F. Bertino, J. App. Phys. 105(11), 113917 (2009)CrossRefGoogle Scholar
  57. 57.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Addison-Wesley, Oxford, 2009)Google Scholar
  58. 58.
    S.N. Babu, J.H. Hsu, Y.S. Chen, J.G. Lin, J. Appl. Phys. 109(7), 07D904 (2011)CrossRefGoogle Scholar
  59. 59.
    G. Catalan, Appl. Phys. Lett. 88(10), 102902–102904 (2006)CrossRefGoogle Scholar
  60. 60.
    A. Venimadhav, D. Chandrasekar, J.Krishna Murthy, Appl Nanosci. 3(1), 25–28 (2013)CrossRefGoogle Scholar
  61. 61.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67(18), 180401–180404 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mehraj Ud Din Rather
    • 1
  • Rubiya Samad
    • 1
  • Basharat Want
    • 1
  1. 1.Solid State Research Lab, Department of PhysicsUniversity of KashmirSrinagarIndia

Personalised recommendations