Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19111–19122 | Cite as

Fabrication, characterization and excellent formaldehyde gas sensing of Tb-doped In2O3 beaded-porous nanotubes

  • Haojie Duan
  • Yue He
  • Shouchun Li
  • Li Liu
  • Suyang Xu
  • Yu Li
  • Haiying Li
  • Yimin Gong
  • Qingcheng Liang
  • Yali Cheng
Article
  • 16 Downloads

Abstract

The pure and Tb-doped In2O3 beaded-porous nanotubes (BPNTs) are fabricated by simple electrospinning method. The crystal phase, morphology and chemical composition of the obtained samples were analyzed by characteristic techniques (XRD, FE-SEM, TEM, EDS, XPS, etc.). The mechanism of forming BPNTs structure was studied, and phase separation plays a key role in the process of formation. A series of sensing tests toward formaldehyde gas showed that 6 mol% Tb-doped In2O3 BPNTs exhibited the best sensing performance: high response (75–50 ppm), shorter response and recovery times (2 s and 12 s), low limit of detection (LOD, 1.27–100 ppb), good selectivity and long-term stability, etc. The significantly improved gas sensing properties were mainly resulted from their high surface basicity, enriched defects (oxygen vacancies), small crystallite size and complex porous structures.

Notes

Acknowledgements

The work has been supported by the Jilin Provincial Science and Technology Department (No. 20170101199JC).

References

  1. 1.
    A. Jamshidi, Y. Hajizadeh, M.M. Amin et al., J. Chem. Technol. Biotechnol. 93, 1328 (2017).  https://doi.org/10.1002/jctb.5496 CrossRefGoogle Scholar
  2. 2.
    D.J. Luecken, S.L. Napelenok, M. Strum, R. Scheffe, S. Phillips, Environ. Sci. Technol. 52, 4668 (2018).  https://doi.org/10.1021/acs.est.7b05509 CrossRefGoogle Scholar
  3. 3.
    R.J. Mendelsberg, G. Garcia, H. Li, L. Manna, DJ Milliron, J. Phys. Chem. C 116, 12226 (2012).  https://doi.org/10.1021/jp302732s CrossRefGoogle Scholar
  4. 4.
    S. Ghosh, K. Das, G. Sinha, J. Lahtinen, SK De, J. Mater. Chem. 1, 5557 (2013).  https://doi.org/10.1039/C3TC31087F CrossRefGoogle Scholar
  5. 5.
    K. Anand, J. Kaur, R.C. Singh, R. Thangaraj, Chem. Phys. Lett. 670, 37 (2017).  https://doi.org/10.1016/j.cplett.2016.12.057 CrossRefGoogle Scholar
  6. 6.
    J.Y. Zhou, J.L. Bai, H. Zhao et al., Sens. Actuators B Chem. 265, 273 (2018).  https://doi.org/10.1016/j.snb.2018.03.008 CrossRefGoogle Scholar
  7. 7.
    A. Katoch, Z.U. Abideen, J.-H. Kim, S.S. Kim, Sens. Actuators B Chem. 232, 698 (2016).  https://doi.org/10.1016/j.snb.2016.04.013 CrossRefGoogle Scholar
  8. 8.
    C. Zhao, B. Huang, E. Xie, J. Zhou, Z. Zhang, Sens. Actuators B Chem. 207, 313 (2015).  https://doi.org/10.1016/j.snb.2014.10.087 CrossRefGoogle Scholar
  9. 9.
    J. Wang, J. Su, H. Chen, X. Zou, G.-D. Li, J. Mater. Chem. 6, 4156 (2018).  https://doi.org/10.1039/C8TC00638E CrossRefGoogle Scholar
  10. 10.
    X. Chen, L. Li, W. Zhang et al., J. Mol. Catal. A: Chem. 414, 27 (2016).  https://doi.org/10.1016/j.molcata.2015.12.023 CrossRefGoogle Scholar
  11. 11.
    J. Ma, H. Fan, H. Tian et al., Sens. Actuators B Chem. 262, 17 (2018).  https://doi.org/10.1016/j.snb.2018.01.226 CrossRefGoogle Scholar
  12. 12.
    Z. Wang, G. Men, R. Zhang, F. Gu, D. Han, Sens. Actuators B Chem. 263, 218 (2018).  https://doi.org/10.1016/j.snb.2018.02.105 CrossRefGoogle Scholar
  13. 13.
    M. Bagheri, A.A. Khodadadi, A.R. Mahjoub, Y. Mortazavi, Sens. Actuators B Chem. 220, 590 (2015).  https://doi.org/10.1016/j.snb.2015.06.007 CrossRefGoogle Scholar
  14. 14.
    V. Kumar, O.M. Ntwaeaborwa, J. Holsa, D.E. Motaung, H.C. Swart, Opt. Mater. 46, 510 (2015).  https://doi.org/10.1016/j.optmat.2015.05.011 CrossRefGoogle Scholar
  15. 15.
    S. Singh, A. Singh, B.C. Yadav, P.K. Dwivedi, Sens. Actuators B Chem. 177, 730 (2013).  https://doi.org/10.1016/j.snb.2012.11.096 CrossRefGoogle Scholar
  16. 16.
    Z. Qin, Y. Liu, W. Chen et al., Chem. Phys. Lett. 646, 12 (2016).  https://doi.org/10.1016/j.cplett.2015.12.054 CrossRefGoogle Scholar
  17. 17.
    V.D. Kapse, S.A. Ghosh, G.N. Chaudhari, F.C. Raghuwanshi, D.D. Gulwade, Vacuum 83, 346 (2008).  https://doi.org/10.1016/j.vacuum.2008.05.027 CrossRefGoogle Scholar
  18. 18.
    D. Haojie, Y. Lei, H. Yue et al., Mater. Res. Express 4, 095022 (2017).  https://doi.org/10.1088/2053-1591/aa89f9 CrossRefGoogle Scholar
  19. 19.
    Y. Cao, Y. Li, D. Jia, J. Xie, RSC Adv. 4, 46179 (2014).  https://doi.org/10.1039/C4RA06995A CrossRefGoogle Scholar
  20. 20.
    X. Lai, G. Shen, P. Xue et al., Nanoscale 7, 4005 (2015).  https://doi.org/10.1039/C4NR05772D CrossRefGoogle Scholar
  21. 21.
    D. Wang, M. Zhang, Z. Chen et al., Sens. Actuators B Chem. 250, 533 (2017).  https://doi.org/10.1016/j.snb.2017.04.164 CrossRefGoogle Scholar
  22. 22.
    A. Montazeri, F. Jamali-Sheini, Sens. Actuators B Chem. 242, 778 (2017).  https://doi.org/10.1016/j.snb.2016.09.181 CrossRefGoogle Scholar
  23. 23.
    A. Hastir, N. Kohli, R.C. Singh, Sens. Actuators B Chem. 231, 110 (2016).  https://doi.org/10.1016/j.snb.2016.03.001 CrossRefGoogle Scholar
  24. 24.
    S.P. Choudhury, N. Kumari, A. Bhattacharjee, J. Mater. Sci. Mater. Electron. 28, 18003 (2017).  https://doi.org/10.1007/s10854-017-7743-3 CrossRefGoogle Scholar
  25. 25.
    G.K. Williamson, W.H. Hall (1953) Acta Metal. 1: 22.  https://doi.org/10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  26. 26.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016).  https://doi.org/10.1007/s10854-016-5305-8 CrossRefGoogle Scholar
  27. 27.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374 (2017).  https://doi.org/10.1016/S1002-0721(17)60922-0 CrossRefGoogle Scholar
  28. 28.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S. Mostafa Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 9776 (2015).  https://doi.org/10.1007/s10854-015-3648-1 CrossRefGoogle Scholar
  29. 29.
    T. Tomita, K. Yamashita, Y. Hayafuji, H. Adachi, Appl. Phys. Lett. 87, 051911 (2005).  https://doi.org/10.1063/1.2001741 CrossRefGoogle Scholar
  30. 30.
    G.B. González, T.O. Mason, J.P. Quintana et al., J. Appl. Phys. 96, 3912 (2004).  https://doi.org/10.1063/1.1783610 CrossRefGoogle Scholar
  31. 31.
    GB González (2012) Materials 5: 818.  https://doi.org/10.3390/ma5050818 CrossRefGoogle Scholar
  32. 32.
    A. Hastir, N. Kohli, R.C. Singh, J. Phys. Chem. Solids 105, 23 (2017).  https://doi.org/10.1016/j.jpcs.2017.02.004 CrossRefGoogle Scholar
  33. 33.
    Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004).  https://doi.org/10.1126/science.1096566 CrossRefGoogle Scholar
  34. 34.
    A. Hastir, R.L. Opila, N. Kohli et al., J. Mater. Sci. 52, 8502 (2017).  https://doi.org/10.1007/s10853-017-1059-9 CrossRefGoogle Scholar
  35. 35.
    H. Gao, Q. Yu, S. Zhang et al., Sens. Actuators B Chem. 269, 210 (2018).  https://doi.org/10.1016/j.snb.2018.04.161 CrossRefGoogle Scholar
  36. 36.
    M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, Appl. Phys. Lett. 93, 263103 (2008).  https://doi.org/10.1063/1.3046726 CrossRefGoogle Scholar
  37. 37.
    R. Dong, L. Zhang, Z. Zhu, J. Yang, X. Gao, S. Wang, Cryst. Eng. Commun. 19, 562 (2017).  https://doi.org/10.1039/C6CE02061E CrossRefGoogle Scholar
  38. 38.
    H. Chen, J. Hu, G.-D. Li, Q. Gao, C. Wei, X. Zou, ACS Appl. Mater. Interfaces. 9, 4692 (2017).  https://doi.org/10.1021/acsami.6b13520 CrossRefGoogle Scholar
  39. 39.
    L. Qin, J. Xu, X. Dong et al., Nanotechnology 19, 185705 (2008).  https://doi.org/10.1088/0957-4484/19/18/185705 CrossRefGoogle Scholar
  40. 40.
    J. Wang, B. Zou, S. Ruan, J. Zhao, F. Wu, Mater. Chem. Phys. 117, 489 (2009).  https://doi.org/10.1016/j.matchemphys.2009.06.045 CrossRefGoogle Scholar
  41. 41.
    M. Bagheri, N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, Y. Mortazavi, Sens. Actuators B Chem. 191, 283 (2014).  https://doi.org/10.1016/j.snb.2013.10.001 CrossRefGoogle Scholar
  42. 42.
    C. Zhao, G. Zhang, W. Han et al., Cryst. Eng. Commun. 15, 6491 (2013).  https://doi.org/10.1039/C3CE40962G CrossRefGoogle Scholar
  43. 43.
    S. Xu, J. Gao, L. Wang et al., Nanoscale 7, 14643 (2015).  https://doi.org/10.1039/C5NR03796D CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haojie Duan
    • 1
  • Yue He
    • 1
  • Shouchun Li
    • 1
  • Li Liu
    • 1
  • Suyang Xu
    • 2
  • Yu Li
    • 1
  • Haiying Li
    • 1
  • Yimin Gong
    • 1
  • Qingcheng Liang
    • 3
  • Yali Cheng
    • 1
  1. 1.College of Physics, State Key Laboratory of Superhard MaterialsJilin UniversityChangchunPeople’s Republic of China
  2. 2.Dehui Secondary Vocational Technical SchoolChangchunPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations