Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19099–19110 | Cite as

Studies of structural, dielectric relaxation and impedance spectroscopy of lead-free double perovskite: Dy2NiMnO6

  • Rutuparna Das
  • R. N. P. Choudhary
Article
  • 66 Downloads

Abstract

Polycrystalline material of double perovskite Dy2NiMnO6 was successfully synthesized by a high-temperature solid-state reaction method. Preliminary X-ray investigation established the formation of compound with monoclinic structure. The material exhibits dielectric relaxation supported by modified Curie–Weiss law and a Vogel–Fulcher law. Impedance spectroscopy of the compound was analyzed by impedance analyzer in the range of frequency (1 kHz–1 MHz) and temperature (25–250 °C) that confirming non-Debye type of relaxation. The presence of different kind of charge carriers along with NTCR behavior of the material was found from the AC conductivity study. It is noticed that oxygen vacancies are the responsible factor for high temperature conduction process and dynamics of polarization of system. From these results, it may be concluded that this compound may have extreme potential applications at different temperatures.

References

  1. 1.
    D.K. Mahato, A. Dutta, T.P. Sinha, Impedance spectroscopy analysis of double perovskite Ho2NiTiO6. J. Mater. Sci. 45, 6757–6762 (2010)CrossRefGoogle Scholar
  2. 2.
    F.M. Casallas, E. Vera-Lópeza, D.A. Landínez Téllez, D.E. Saavedra Mesa, J. Roa-Rojas, Magnetic feature, compositional and structural analysis of the La2SrFe2CoO9 complex perovskite. J. Phys. 480, 012034 (2014)Google Scholar
  3. 3.
    O. Ortiz-Diaz, M.J.A. Rodriguez, F. Fajardo, D.A.L. Tellez, R. Rojas, J. Phys. B 398, 248 (2007)CrossRefGoogle Scholar
  4. 4.
    F. HuiQing, K.E. ShanMing, Relaxor behavior and electrical properties of high dielectric constant materials. Sci. China Ser. E-Tech. Sci. 52, 2180–2185 (2009)Google Scholar
  5. 5.
    B. Raveau, Prog. Solid State Chem. 35, 171 (2007)CrossRefGoogle Scholar
  6. 6.
    F. Gheorghiu, L. Curecheriu, I. Lisiecki, P. Beaunier, S. Feraru, M.N. Palamaru, V. Musteata, N. Lupu, L. Mitoseriu, Functional properties of Sm2NiMnO6 multiferroic ceramics prepared by spark plasma sintering. (2015)  https://doi.org/10.1016/j.jallcom.2015.07.13
  7. 7.
    M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, Designed ferromagnetic, ferroelectric Bi2NiMnO6. J. Am. Chem. Soc. 127, 8889–8892 (2005)CrossRefGoogle Scholar
  8. 8.
    C. Shi, Y. Hao, Z. Hu, J. Phys. D Appl. Phys. 44, 245405 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Chanda, S. Saha, A. Dutta, T.P. Sinha, Structural and transport properties of double perovskite Dy2NiMnO6. Mater. Res. Bull.  https://doi.org/10.1016/j.materresbull.2014.11.021 CrossRefGoogle Scholar
  10. 10.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Catalan, Magneto-dielectric effect without multiferroic coupling. Appl. Phys. Lett. 88, 102902 (2006)CrossRefGoogle Scholar
  12. 12.
    T. Bonaedy, Y.S. Koo, K.D. Sung, J.H. Jung, Magneto-dielectric coupling in core/shell BaTiO3∕γ-Fe2O3BaTiO3∕γ-Fe2O3 nanoparticles. Appl. Phys. Lett. 91, 132901 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Ravez, A. Simon, Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162, 260–265 (2001)CrossRefGoogle Scholar
  14. 14.
    K. Parida, S.K. Dehury, R.N.P. Choudharya, Electrical, optical and magneto-electric characteristics of BiBaFeCeO6 electronic system. Mater. Sci. Eng. B 225, 173 (2017)CrossRefGoogle Scholar
  15. 15.
    V. Purohit, R. Padhee, R.N.P. Choudhary, Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)O3 ceramic. Ceram. Int.  https://doi.org/10.1016/j.ceramint.2017.11.194 CrossRefGoogle Scholar
  16. 16.
    F. Calderón-Piñar, O. García-Zaldívar, Y. González-Abreu, Relaxor behaviour in ferroelectric ceramics. Adv. Ferroelectr  https://doi.org/10.5772/52149 CrossRefGoogle Scholar
  17. 17.
    D.K. Mahato, A. Dutta, T.P. Sinha, Dielectric relaxation in double perovskite oxide, Ho2CdTiO6. Bull. Mater. Sci. 34, 455–462 (2011)Google Scholar
  18. 18.
    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloy. Compd. 750, 507 (2018)CrossRefGoogle Scholar
  19. 19.
    O.F. Mossoti, Mem. di Mathem e.di.fisica in Modena 24, 49 (1850)Google Scholar
  20. 20.
    N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, Dielectric and electrical properties of the double perovskite PbBaBiNbO6. J. Elect. Mater.  https://doi.org/10.1007/s11664-015-3939-6 CrossRefGoogle Scholar
  21. 21.
    T. Siritanon, N. Chathirat, C. Masingboon, T. Yamwong, S. Maensiri, Synthesis, characterization, and dielectric properties of Y2NiMnO6 ceramics prepared by a simple thermal decomposition route. J. Mater. Sci. Mater. Electron. 25, 1361–1368 (2014)CrossRefGoogle Scholar
  22. 22.
    B.N. Parida, N. Panda, R. Padhee, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 1824–1831 (2017)CrossRefGoogle Scholar
  23. 23.
    A.E. Glazounov, A.K. Tagantsev, Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics. Appl. Phys. Lett. 73, 856 (1998)CrossRefGoogle Scholar
  24. 24.
    H. Yu, Z.G Ye, Dielectric properties and relaxor behavior of a new (1−x)BaTiO3−xBiAlO3 solid solution. J. Appl. Phys. 103, 034114 (2008)CrossRefGoogle Scholar
  25. 25.
    B. Tilak, Ferroelectric relaxor behavior and spectroscopic properties of Ba2+ and Zr4+ modified sodium bismuth titanate. Am. J. Mater. Sci. 2(4), 110–118 (2012)CrossRefGoogle Scholar
  26. 26.
    M.R. Panigrahi, S.Panigrahi, Phase transition and dielectric study in Ba0⋅95 Dy0⋅05 TiO3 ceramic. Mater. Sci. 34(4) (2011)Google Scholar
  27. 27.
    B. Beleckas, J. Grigas, S. Stefanovich, Litovskii Fizicheskii sbornik. 202, 29 (1989)Google Scholar
  28. 28.
    R.I. Dass, J.-Q. Yan, J.B. Goodenough, Oxygen stoichiometry, ferromagnetism, and transport properties of La2 – x NiMnO6 + δ. Phys. Rev. B 68, 064415 (2003)CrossRefGoogle Scholar
  29. 29.
    B.E. Vugmeister, M.D. Glinichuk, Dipole glass and ferroelectricity in random-site electric dipole systems. Rev. Mod. Phys. 62, 993–1026 (1990)CrossRefGoogle Scholar
  30. 30.
    A.R. West, D.C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1 (1997)Google Scholar
  31. 31.
    H. Borkar, M. Tomar, V. Gupta, A. Kumar,Impedance Spectroscopy study in the vicinity of ferroelectric phase transition. arXiv:1407.7653
  32. 32.
    A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C.Vallée,B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D Appl. Phys. 46, 065308 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9 Ni0.1 O3 by impedance spectroscopy. J. Phys. D Appl. Phys. 43, 155401 (2010)CrossRefGoogle Scholar
  34. 34.
    Z. Imran, M.A. Rafiq, M.M. Hasan, Charge carrier transport mechanisms in perovskite CdTiO3 fibers. AIP Adv. 4, 067137 (2014).  https://doi.org/10.1063/1.4885462 CrossRefGoogle Scholar
  35. 35.
    D.K. Sharmaa, N. Kumar, S. Sharma, R. Rai, Effect of BaTiO3 additive on the electrical properties of Na0.50 Bi0.50 TiO3 lead free ceramics. Mater. Chem. Phys. 1–8 (2013)Google Scholar
  36. 36.
    D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  37. 37.
    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics. J. Phys. D Appl. Phys. 49, 035302 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Sahoo, S. Das, P.K. Mahapatra, R.N.P. Choudhary, Fabrication and characterization of LaFeO3–BaTiO3 electroceramics. Mater. Chem. Phys. 216, 158–169 (2016)CrossRefGoogle Scholar
  39. 39.
    K.D. Chandrasekhar, A.K. Das, C. Mitra, A. Venimadhav, The extrinsic origin of the magnetodielectric effect in the double perovskite La2NiMnO6. J. Phys. Condens. Matter. 24, 495901 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Ullaha, S.A. Khan, G. Murtazaa, R. Khenatac, N. Ullahd, S. Bin Omrane, Electrical, thermoelectric and magnetic properties of La2NiMnO6 and La2CoMnO6. J. Magn. Magn. Mater. 377, 197–203 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Halder, K. Parida, S.N. Das, S. Bhuyan, R.N.P. Choudhary, Dielectric and impedance characteristics of Bi(Zn 2/3Nb1/3)O3. J. Mater. Sci. Mater. Electron. (2017)  https://doi.org/10.1007/s10854-017-7489-y CrossRefGoogle Scholar
  42. 42.
    N. Kumar, A. Ghosh, R.N.P, Choudhary Electrical behavior of Pb (Zr0.52 Ti0.48)0.5 (Fe0.5 Nb0.5)0.5 O3 ceramics. Mater. Chem. Phys. (2011)  https://doi.org/10.1016/j.matchemphys.2011.06.059 CrossRefGoogle Scholar
  43. 43.
    B.N. Parida, N. Panda, R. Padhee, P.R. Das, R.N.P. Choudhary, Dielectric relaxation and impedance analysis of ferroelectric double perovskite Pb2BiNbO6. J. Mater. Sci. 28, 1824–1831  https://doi.org/10.1007/s10854-016-5732-6 (2017)CrossRefGoogle Scholar
  44. 44.
    B. Pati, R.N.P. Choudhary, P.R. Das, Phase transition and electrical properties of strontium orthovanadate. J. Alloy. Compd. 579, 218 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Pattanayak, R.N.P. Choudhary, Synthesis, electrical and magnetic characteristics of Nd-modified BiFeO3. Ceram. Int. 41, 9403 (2015)CrossRefGoogle Scholar
  46. 46.
    R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhury, Impedance and electric modulus analysis of Sm-modified Pb (Zr0.55 Ti0.45)1–x/4O3 ceramics. J. Alloys Compd. 509, 6388 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Nath, S.K. Barik, S. Hajra, R.N.P. Choudhary, Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2(Fe2/3Mo1/3)O3 electroceramics. J. Mater. Sci.: Mater. Electron. 29, 12251–12257 (2018)Google Scholar
  48. 48.
    N. Kumar, S.K. Patri, R.N.P. Choudhary, Frequency-temperature response of a new multiferroic. J. Alloys Compd. 615, 456 (2014)CrossRefGoogle Scholar
  49. 49.
    A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSiksha O Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations