Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19086–19098 | Cite as

Significant improvement in morphological, dielectric, ferroelectric and piezoelectric characteristics of Ba0.9Sr0.1Ti0.9Zr0.1O3–BaNb2O6 nanocomposites

  • Aditya Jain
  • Amrish K. Panwar
  • A. K. Jha
Article
  • 33 Downloads

Abstract

Multifunctional composite with material composition (1 − x)Ba0.9Sr0.1Ti0.9Zr0.1O3xBaNb2O6 (x = 0.0, 0.05, 0.1, 0.2 and 0.3) has been successfully synthesized using mechano-chemical activation process. The co-existence of perovskite tetragonal phase of BSTZ and niobate orthorhombic phase of BNO was detected by X-ray diffraction measurement and confirmed by Rietveld analysis. All the BSTZ–BNO composites show a polygonal grain type morphology with clearly visible grain boundaries. BSTZ–BNO composites possessed a thermally stable dielectric constant within a broad range of temperature. The obtained results show a strong influence of BNO addition on the microstructural, dielectric, ferroelectric, piezoelectric and breakdown strength of bare BSTZ ceramic. For x = 0.10, the composite exhibit optimum properties with high dielectric constant εm = 5842, large remnant polarization Pr = 9.25 µC/cm2, improved piezoelectric constant d33 = 296 pC/N and high breakdown strength Ebd = 304 kV/cm. The high dielectric constant accompanied by very low dielectric loss and large piezoelectric constant make BSTZ–BNO a suitable material for ceramic capacitors and electromechanical device applications.

Supplementary material

10854_2018_35_MOESM1_ESM.docx (709 kb)
Supplementary material 1 (DOCX 709 KB)

References

  1. 1.
    R. Grigalaitis, M.V. Petrović, J. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 40, 6165–6170 (2014)CrossRefGoogle Scholar
  2. 2.
    D.W. Kim, K.S. Hong, C.H. Kim, K. Char, Crystallographic orientation dependence of the dielectric constant in polymorphic BaNb2O6 thin films deposited by laser ablation. Appl. Phys. A 79, 677–680 (2003)CrossRefGoogle Scholar
  3. 3.
    N. Maikhuri, A.K. Panwar, A. Jha, Investigation of A-and B-site Fe substituted BaTiO3 ceramics. J. Appl. Phys. 113, 17D915 (2013)CrossRefGoogle Scholar
  4. 4.
    J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, D. Das, Large piezoelectric strain observed in sol–gel derived BZT–BCT ceramics. Curr. Appl. Phys. 14, 396–402 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Zheng, F. Straub, Q. Zhan, P.L. Yang, W.K. Hsieh, F. Zavaliche, Y.H. Chu, U. Dahmen, R. Ramesh, Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006)CrossRefGoogle Scholar
  6. 6.
    A.K. Vishwakarma, K. Jha, M. Jayasimhadri, A.S. Rao, K. Jang, B. Sivaiah, D. Haranath, Red light emitting BaNb2O6:Eu3+ phosphor for solid state lighting applications. J. Alloys Compd. 622, 97–101 (2015)CrossRefGoogle Scholar
  7. 7.
    I.-S. Cho, S.T. Bae, D.H. Kim, K.S. Hong, Effects of crystal and electronic structures of ANb2O6 (A=Ca, Sr, Ba) metaniobate compounds on their photocatalytic H2 evolution from pure water. Int. J. Hydrog. Energy 35, 12954–12960 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Ebina, T. Higuchi, T. Hattori, T. Tsukamoto, Ferroelectric and structural properties of Sr0.5Ba0.5Nb2O6 thin films on La0.05Sr0.95TiO3 substrate. Jpn. J. Appl. Phys. 45, 7300 (2006)CrossRefGoogle Scholar
  9. 9.
    D.W. Kim, H.B. Hong, K.S. Hong, C.K. Kim, D.J. Kim, The reversible phase transition and dielectric properties of BaNb2O6 polymorphs. Jpn. J. Appl. Phys., Part 41, 6045–6048 (2002)CrossRefGoogle Scholar
  10. 10.
    S.P. Gaikwad, V. Samuel, R. Pasricha, V. Ravi, Preparation of nanocrystalline ferroelectric BaNb2O6 by citrate gel method, Bull. Mater. Sci., 28 121–123 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Sahoo, Z. Yajun, J. Wang, R. Choudhary, Composition control of magnetoelectric relaxor behavior in multiferroic BaZr0.4Ti0.6O3/CoFe2O4 composites. J. Alloys Compd. 657, 12–20 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRefGoogle Scholar
  13. 13.
    T. Badapanda, S. Sarangi, B. Behera, S. Parida, S. Saha, T. Sinha, R. Ranjan, P. Sahoo, Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J. Alloys Compd. 645, 586–596 (2015)CrossRefGoogle Scholar
  14. 14.
    C.C. Koch, Y. Cho, Nanocrystals by high energy ball milling. Nanostruct. Mater. 1, 207–212 (1992)CrossRefGoogle Scholar
  15. 15.
    L. Kong, W. Zhu, O. Tan, Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders. Mater. Lett. 42, 232–239 (2000)CrossRefGoogle Scholar
  16. 16.
    Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, 454–459 (1994)CrossRefGoogle Scholar
  17. 17.
    G. Arlt, N.A. Pertsev, Force constant and effective mass of 90° domain walls in ferroelectric ceramics. J. Appl. Phys. 70, 2283–2289 (1991)CrossRefGoogle Scholar
  18. 18.
    D. Damjanovic, M. Demartin, H. Shulman, M. Testorf, N. Setter, Instabilities in the piezoelectric properties of ferroelectric ceramics. Sens. Actuators A: Phys. 53, 353–360 (1996)CrossRefGoogle Scholar
  19. 19.
    C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRefGoogle Scholar
  20. 20.
    T.M. Kamel, G. de With, Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics. J. Eur. Ceram. Soc. 28, 851–861 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Herabut, A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1–1.5x) LaxTiO3 ceramics. J. Am. Ceram. Soc. 80, 2954–2958 (1997)CrossRefGoogle Scholar
  22. 22.
    S. Sarraute, O.T. Sørensen, B.F. Sørensen, E.R. Hansen, Microstructure dependent thermophysical properties of Ni–Zn ferrite–BaTiO3 functionally graded ceramics, J. Mater. Sci. 34, 99–104 (1999)CrossRefGoogle Scholar
  23. 23.
    A.K. Singh, T. Goel, R. Mendiratta, O. Thakur, C. Prakash, Dielectric properties of Mn-substituted Ni-Zn ferrites. J. Appl. Phys. 91, 6626–6629 (2002)CrossRefGoogle Scholar
  24. 24.
    A. Jain, A.K. Panwar, A.K. Jha, Influence of milling duration on microstructural, electrical, ferroelectric and piezoelectric properties of Ba0.9Sr0.1Zr0.04Ti0.96O3 ceramic. Ceram. Int. 42, 18771–18778 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Zhang, L. Li, J. Yu, High dielectric constant and good thermal stability from − 55 °C to 450 °C in BaTiO3-based ceramics. Mater. Lett. 160, 128–131 (2015)CrossRefGoogle Scholar
  26. 26.
    X.Y. Ye, Y.M. Li, J.J. Bian, Dielectric and energy storage properties of Mn-doped Ba0.3Sr0.475La0.12Ce0.03TiO3 dielectric ceramics. J. Eur. Ceram. Soc. 37, 107–114 (2017)CrossRefGoogle Scholar
  27. 27.
    L.H. Parker, A.F. Tasch, Ferroelectric materials for 64 Mb and 256 Mb DRAMS. IEEE Circuits Devices Mag. 6, 17–26 (1990)CrossRefGoogle Scholar
  28. 28.
    L. Testardi, W. Moulton, H. Mathias, H. Ng, C. Rey, Large static dielectric constant in the high-temperature phase of polycrystalline YBa2Cu3Ox. Phys. Rev. B: Condens. Matter 37, 2324 (1988)CrossRefGoogle Scholar
  29. 29.
    H.G. Bohn, T. Schober, Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 83, 768–772 (2000)CrossRefGoogle Scholar
  30. 30.
    R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014)CrossRefGoogle Scholar
  31. 31.
    S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014)CrossRefGoogle Scholar
  32. 32.
    W. Cai, C. Fu, J. Gao, H. Chen, Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. J. Alloys Compd. 480, 870–873 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Kuehn, H. Kliem, The method of local fields: a bridge between molecular modelling and dielectric theory. J. Electrostat. 67, 203–208 (2009)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, C.-W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 4103 (2008)Google Scholar
  35. 35.
    R. Muduli, R. Pattanayak, S. Raut, P. Sahu, S. V, S. Rath, P. Kumar, S. Panigrahi, R.K. Panda, Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic. J. Alloys Compd. 664, 715–725 (2016)CrossRefGoogle Scholar
  36. 36.
    A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, Mechanical vs. electrical failure mechanisms in high voltage, high energy density multilayer ceramic capacitors. J. Mater. Sci. 42, 5613–5619 (2007)CrossRefGoogle Scholar
  37. 37.
    T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996)CrossRefGoogle Scholar
  38. 38.
    W. Lei, R. Ang, X.-C. Wang, W.-Z. Lu, Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)CrossRefGoogle Scholar
  39. 39.
    W. Lei, Y.-Y. Yan, X.-H. Wang, W. Lu, Z.-B. Yang, W.-Z. Lu, Improving the breakdown strength of (Mg0.9Zn0.1)2(Ti1–xMnx)O4 ceramics with low dielectric loss. Ceram. Int. 41, 521–525 (2015)CrossRefGoogle Scholar
  40. 40.
    Y. Tian, S. Li, Y. Gong, D. Meng, J. Wang, Q. Jing, Effects of Er3+–doping on dielectric and piezoelectric properties of 0.5Ba0.9Ca0.1TiO3–0.5BaTi0.88Zr0.12O3–0.12%La–xEr lead–free ceramics. J. Alloys Compd. 692, 797–804 (2017)CrossRefGoogle Scholar
  41. 41.
    J.P. Praveen, T. Karthik, A. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J. Eur. Ceram. Soc. 35, 1785–1798 (2015)CrossRefGoogle Scholar
  42. 42.
    B. Jaffe, Piezoelectric Ceramics, (Elsevier, New York, 2012)Google Scholar
  43. 43.
    C. Duran, S. Trolier-McKinstry, G.L. Messing, Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. J. Am. Ceram. Soc. 83, 2203–2213 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lithium Ion Battery Technology LabDelhi Technological UniversityNew DelhiIndia
  2. 2.Department of Applied ScienceA.I.A.C.T.R.New DelhiIndia

Personalised recommendations