Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19052–19062 | Cite as

Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method

  • N. F. Andrade Neto
  • Y. G. Oliveira
  • C. A. Paskocimas
  • M. R. D. Bomio
  • F. V. Motta
Article
  • 73 Downloads

Abstract

In this work, pure PbS powders doped with silver were obtained in the proportions of 1, 2, 4 and 8 mol% by sonochemical method. Powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–Vis spectroscopy (UV–Vis) and EPR analysis. The photocatalytic properties were estimated by degradation of methylene blue dye. The antimicrobial properties were studied by the formation of inhibition halos against Escherichia coli and Staphylococcus aureus bacteria and Candida albicans yeast. XRD patterns show that PbS, with a cubic structure, was obtained without the formation of secondary phases. FE-SEM analysis indicates loss of the cubic aspect of PbS samples as the Ag+ concentration increases and particle size reduces. The defects generated by the substitution of Pb2+ by Ag+ increase the photocatalytic activity, where PbS and P8A samples reduced by 25% and 68%, respectively, the MB concentration and significantly increased the antimicrobial activity against E. coli and S. aureus bacteria and C. albicans yeast.

Notes

Acknowledgements

The authors thank the financial support of the Brazilian research financing institutions: CNPq. No 307546/2014-4 and CAPES/PROCAD 2013/2998/2014.

Supplementary material

10854_2018_31_MOESM1_ESM.tif (4.6 mb)
Supplementary Figure S1 - Photomacrographs for (a) PbS, (b) P1A, (c) P2A, (d) P4A and (e) P8A (TIF 4677 KB)
10854_2018_31_MOESM2_ESM.tif (3.1 mb)
Supplementary Figure S2 - XRD patterns for the (a) PbS, (b) P1A, (c) P2A, (d) P4A and (e) P8A samples after the photocatalytic test (TIF 3198 KB)

References

  1. 1.
    D. Sánchez-Rodríguez, M.G. Méndez Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. J. Environ. Chem. Eng. 6, 1601–1612 (2018)CrossRefGoogle Scholar
  2. 2.
    M.B. Askari, Z. Tavakoli Banizi, M. Seifi, S. Bagheri Dehaghi, P. Veisi, Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik 149, 447–454 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Kunz, P. Peralta-Zamora, S.G.d. Moraes, N. Durán, Novas tendências no tratamento de efluentes têxteis. Química Nova 25, 78–82 (2002)CrossRefGoogle Scholar
  4. 4.
    T. Stephenson, Wastewater microbiology. By Gabriel Bitton, Wiley–Liss, New York, 1994, ix + 478 pp., price £103.00. ISBN 0 471 30985 0. J. Chem. Technol. Biotechnol. 64, 213–214 (1995)CrossRefGoogle Scholar
  5. 5.
    R.M. Dallago, A. Smaniotto, L.C.A.d. Oliveira, Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Química Nova 28, 433–437 (2005)CrossRefGoogle Scholar
  6. 6.
    N.M. Mahmoodi, S. Keshavarzi, M. Ghezelbash, Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater. J. Environ. Chem. Eng. 5, 3684–3689 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceram. Int. 41, 2502–2511 (2015)CrossRefGoogle Scholar
  8. 8.
    C.A. Demarchi, A. Bella Cruz, A. Ślawska-Waniewska, N. Nedelko, P. Dłużewski, A. Kaleta, J. Trzciński, J.D. Magro, J. Scapinello, C.A. Rodrigues, Synthesis of Ag@Fe2O3 nanocomposite based on O-carboxymethylchitosan with antimicrobial activity. Int. J. Biol. Macromol. 107, 42–51 (2018)CrossRefGoogle Scholar
  9. 9.
    J.R. Koduru, S.K. Kailasa, J.R. Bhamore, K.-H. Kim, T. Dutta, K. Vellingiri, Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv. Coll. Interface. Sci. 256, 326–339 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Wang, C. Zhou, W. Wang, B. Du, J. Cai, G. Feng, R. Zhang, CdSe nanoparticle-sensitized ZnO sheets for enhanced photocatalytic hydrogen evolution rates. J. Alloy. Compd. 747, 826–833 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Naz, R.N. Ali, X. Zhu, B. Xiang, Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles. Phys. E 100, 1–6 (2018)CrossRefGoogle Scholar
  12. 12.
    X.F. Jia, Q.Y. Hou, Z.C. Xu, L.F. Qu, Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J. Magn. Magn. Mater. 465, 128–135 (2018)CrossRefGoogle Scholar
  13. 13.
    A.J. Haider, R.H. Al–, G.R. Anbari, C.T. Kadhim, Salame, Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 119, 332–345 (2017)CrossRefGoogle Scholar
  14. 14.
    N.F.A. Neto, L.M.P. Garcia, E. Longo, M.S. Li, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design. J. Mater. Sci. 28, 12273–12281 (2017)Google Scholar
  15. 15.
    C.-H. Lin, W.-C. Chang, X. Qi, Growth and characterization of pure and doped SnO2 Films for H2 gas detection. Proc. Eng. 36, 476–481 (2012)CrossRefGoogle Scholar
  16. 16.
    J.-S. Kim, B.-H. Kang, H.-M. Jeong, S.-W. Kim, B. Xu, S.-W. Kang, Quantum dot light emitting diodes using size-controlled ZnO NPs. Curr. Appl. Phys. 18, 681–685 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Sivaram, D. Selvakumar, A. Alsalme, A. Alswieleh, R. Jayavel, Enhanced performance of PbO nanoparticles and PbO-CdO and PbO-ZnO nanocomposites for supercapacitor application. J. Alloy. Compd. 731, 55–63 (2018)CrossRefGoogle Scholar
  18. 18.
    F.-Y. Liu, J.-H. Lin, Y.-M. Dai, L.-W. Chen, S.-T. Huang, T.-W. Yeh, J.-L. Chang, C.-C. Chen, Preparation of perovskites PbBiO2I/PbO exhibiting visible-light photocatalytic activity. Catal. Today (2018).  https://doi.org/10.1016/j.cattod.2018.02.006 CrossRefGoogle Scholar
  19. 19.
    H. Wang, Y. Li, Y. Wang, J. Ma, S. Hu, H. Hou, J. Yang, Three-dimensional B-doped porous carbon framework anchored with ultrasmall PbO/Pb nanocrystals for lithium storage. Ceram. Int. 43, 12442–12451 (2017)CrossRefGoogle Scholar
  20. 20.
    Z. He, M.D. Hayat, S. Huang, X. Wang, P. Cao, PbO2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation. J. Electroanal. Chem. 812, 74–81 (2018)CrossRefGoogle Scholar
  21. 21.
    A.R. Mandal, A. Bekturganova, A. Ishteev, S.P. Choudhury, G. Karunakaran, D. Kunetsov, Effect of silver doping on the current–voltage characteristic of PbS nanorods. Phys. E 79, 147–151 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.-X. Zhang, Z. Ma, Z.-H. Ge, P. Qin, F. Zheng, J. Feng, Highly enhanced thermoelectric properties of Cu1.8S by introducing PbS. J. Alloy. Compd. 764, 738–744 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Guan, Y. Liu, Z. Bai, J. Zhang, S. Yuan, B. Zhang, Ag nanoparticles embedded in N-doped carbon nanofibers: a superior electrocatalyst for hydrogen peroxide detection. Mater. Chem. Phys. 213, 335–342 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Hu, Z. Zhang, R.J. Patterson, Y. Hu, W. Chen, C. Chen, D. Li, C. Hu, C. Ge, Z. Chen, L. Yuan, C. Yan, N. Song, Z.L. Teh, G.J. Conibeer, J. Tang, S. Huang, Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 46, 212–219 (2018)CrossRefGoogle Scholar
  25. 25.
    B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  26. 26.
    D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144–3151 (1972)CrossRefGoogle Scholar
  27. 27.
    E. Araújo, A.S. Pimenta, F.M.C. Feijó, R.V.O. Castro, M. Fasciotti, T.V.C. Monteiro, K.M.G. Lima, Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J. Appl. Microbiol. 124, 85–96 (2017)CrossRefGoogle Scholar
  28. 28.
    Z. Tshemese, M.D. Khan, S. Mlowe, N. Revaprasadu, Synthesis and characterization of PbS nanoparticles in an ionic liquid using single and dual source precursors. Mater. Sci. Eng. 227, 116–121 (2018)CrossRefGoogle Scholar
  29. 29.
    M. El-Kemary, I. El-Mehasseb, H. El-Shamy, Ag-doped CdO nanocatalysts: preparation, characterization and catechol oxidase activity. J. Mol. Struct. 1161, 83–88 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  31. 31.
    M.J. McKelvy, R. Sharma, A.V.G. Chizmeshya, R.W. Carpenter, K. Streib, Magnesium hydroxide dehydroxylation: in situ nanoscale observations of lamellar nucleation and growth. Chem. Mater. 13, 921–926 (2001)CrossRefGoogle Scholar
  32. 32.
    F.V. Motta, A.P.A. Marques, M.S. Li, M.F.C. Abreu, C.A. Paskocimas, M.R.D. Bomio, R.P. Souza, J.A. Varela, E. Longo, Preparation and photoluminescence characteristics of In(OH)3:xTb3 + obtained by Microwave-Assisted Hydrothermal method. J. Alloy. Compd. 553, 338–342 (2013)CrossRefGoogle Scholar
  33. 33.
    R. Kroon, Nanoscience and the Scherrer equation versus the’Scherrer-Gottingen equation’. S. Afr. J. Sci. 109, 01–02 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Hu, R. Ouyang, W.-X. Li, First-principles kinetics study of carbon monoxide promoted Ostwald ripening of Au particles on FeO/Pt(111). J. Energy Chem. (2018). doi. https://doi.org/10.1016/j.jechem.2018.03.023 CrossRefGoogle Scholar
  35. 35.
    J. Santos, N. Calero, L.A. Trujillo-Cayado, M.C. Garcia, J. Muñoz, Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering. Coll. Surf. B 159, 405–411 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Seweryn, Interactions between surfactants and the skin – Theory and practice. Adv. Coll. Interface. Sci. 256, 242–255 (2018)CrossRefGoogle Scholar
  37. 37.
    C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, Morphology control of porous CuO by surfactant using combustion method. Appl. Surf. Sci. 349, 844–848 (2015)CrossRefGoogle Scholar
  38. 38.
    L. Tolvaj, K. Mitsui, D. Varga, Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood. Wood Sci. Technol. 45, 135–146 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Molaei, S. Abbasi, M. Karimipour, F. Dehghan, A simple UV-assisted, room temperature approach for synthesis of water soluble PbS and PbS/CdS core-shell QDs. Mater. Chem. Phys. 216, 186–190 (2018)CrossRefGoogle Scholar
  40. 40.
    E. Akbay, T.G. Ölmez, Sonochemical synthesis and loading of PbS nanoparticles into mesoporous silica. Mater. Lett. 215, 263–267 (2018)CrossRefGoogle Scholar
  41. 41.
    J.C. Sczancoski, L.S. Cavalcante, N. Marana, R. Oliveira da Silva, R.L. Tranquilin, M. Rincón-Joya, P. Pizani, J. Varela, J. Sambrano, M. Li, E. Longo, J. Andrés, Electronic Structure and optical properties of BaMoO4 powders. Curr. Appl. Phys. 10 (2010) 614–624CrossRefGoogle Scholar
  42. 42.
    T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212, 325–335 (2018)CrossRefGoogle Scholar
  43. 43.
    M.M. Momeni, M. Hakimian, A. Kazempour, In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: a good visible-light photocatalyst. Ceram. Int. 41, 13692–13701 (2015)CrossRefGoogle Scholar
  44. 44.
    M. Mittal, A. Gupta, O.P. Pandey, Role of oxygen vacancies in Ag/Au doped CeO2 nanoparticles for fast photocatalysis. Sol. Energy 165, 206–216 (2018)CrossRefGoogle Scholar
  45. 45.
    M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senilă, O. Marincas, L. Barbu-Tudoran, Magnetic recoverable Fe3O4-TiO2:Eu composite nanoparticles with enhanced photocatalytic activity. Appl. Surf. Sci. 390, 248–259 (2016)CrossRefGoogle Scholar
  46. 46.
    H. Pan, X. Zhao, Z. Fu, W. Tu, P. Fang, H. Zhang, Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites. Appl. Surf. Sci. 442, 547–555 (2018)CrossRefGoogle Scholar
  47. 47.
    M.J. Scaini, G.M. Bancroft, S.W. Knipe, X.P.S. An, AES, and SEM study of the interactions of gold and silver chloride species with PbS and FeS2: Comparison to natural samples. Geochim. Cosmochim. Acta 61, 1223–1231 (1997)CrossRefGoogle Scholar
  48. 48.
    A.R. Mandal, S.K. Mandal, Electron spin resonance in silver-doped PbS nanorods. J. Exp. Nanosci. 5, 189–198 (2010)CrossRefGoogle Scholar
  49. 49.
    B. Clerjaud, A. Gélineau, Strong spin-lattice coupling of Kramers doublets. Phys. Rev. B 16, 82–85 (1977)CrossRefGoogle Scholar
  50. 50.
    L. Elsellami, F. Dappozze, A. Houas, C. Guillard, Effect of Ag + reduction on the photocatalytic activity of Ag-doped TiO2. Superlattices Microstruct. 109, 511–518 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, B. Hungund, Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol. 34, 1035–1043 (2018)CrossRefGoogle Scholar
  52. 52.
    M. Rehan, T.A. Khattab, A. Barohum, L. Gätjen, R. Wilken, Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohyd. Polym. 197, 227–236 (2018)CrossRefGoogle Scholar
  53. 53.
    D. Rehana, D. Mahendiran, R. Manigandan, V. Narayanan, A. Kalilur, Rahiman, Evaluation of photocatalytic, antimicrobial and anticancer activities of ZnO/MS (M = Zn, Cd or Pb) core/shell nanoparticles. Mater. Sci. Eng. 225, 20–32 (2017)CrossRefGoogle Scholar
  54. 54.
    A.V. Badarinath, K. Mallikarjuna Rao, C. Madhu Sudhana Chetty, S. Ramkanth, T.V.S. Rajan, K. Gnanaprakash, A review on In-vitro antioxidant methods: comparisions, correlations and considerations. Int. J. PharmTech Res. 2, 1276–1285 (2010)Google Scholar
  55. 55.
    S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. 44, 278–284 (2014)CrossRefGoogle Scholar
  56. 56.
    Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325–2331 (2011)CrossRefGoogle Scholar
  57. 57.
    M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011)CrossRefGoogle Scholar
  58. 58.
    N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. F. Andrade Neto
    • 1
  • Y. G. Oliveira
    • 1
  • C. A. Paskocimas
    • 1
  • M. R. D. Bomio
    • 1
  • F. V. Motta
    • 1
  1. 1.LSQM, DEMAT, UFRNNatalBrazil

Personalised recommendations