Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19005–19012 | Cite as

Graphene and carbon black filled conductive nanocomposite films for heating element applications

  • Metin Yurddaskal
  • Eyyup Can Doluel
  • Ugur Kartal
  • Alican Koksalar
  • Erdal Celik
Article
  • 51 Downloads

Abstract

Graphene has ultra-high electrical and thermal conductivity, which makes graphene as the most encouraging fillers for thermally conductive composites. Graphene and/or carbon black filled conductive polymer composite (CPC) films used as heating element are smarter than the traditional heating elements due to less environmental pollution, ease of application on many surfaces and possess the merits of lightweight. In this study, we investigated mainly the production, characterization and industrial application of graphene/carbon black reinforced styrene acrylic copolymer emulsion matrix composite films deposited on polyvinyl chloride for flexible heating element. After that, the films were dried at room temperature for 24 h in air. Structural and surface properties of the CPC films were characterized by X-ray diffraction and scanning electron microscopy. Temperature, time and voltage relation of the produced composite films were investigated. Heating and electrical properties of the CPC films were determined by using a thermal camera and 4-point probe measurement system, respectively. The electrical resistivity of the CPC films decreases from ~ 108 to 101 Ω cm with increasing the filler content or using a combination of two fillers. Graphene and carbon black filled conductive polymer composites to be considered as candidates for flexible heating element applications exhibited good electrical and heating properties thanks to synergistic effect of fillers.

Notes

Acknowledgements

The authors are indebted to State Planning Foundation (DPT, Grant Number 2009.K120600) and Dokuz Eylul University financial and infrastructural support for establishment of Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM) where this research was carried out.

References

  1. 1.
    R. Zhang, J.C. Agar, C.P. Wong, Encyclopedia of Polymer Science and Technology, (John Wiley & Sons, Inc., Hoboken, 2011)Google Scholar
  2. 2.
    K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. Echegoyen Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Nanomaterial (Basel, Switzerland) 7, (2017)Google Scholar
  3. 3.
    S. Isaji, Y. Bin, M. Matsuo, Polymer (Guildf). 50, 1046 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Erol, E. Çelik, Mater. Tehnol. 47, 25 (2013)Google Scholar
  5. 5.
    D. Bloor, K. Donnelly, P.J. Hands, P. Laughlin, D. Lussey, J. Phys. D Appl. Phys. 38, 2851 (2005)CrossRefGoogle Scholar
  6. 6.
    P.V. Notingher, D. Panaitescu, H. Paven, M. Chipara, J. Optoelectron. Adv. Mater. 6, (2004)Google Scholar
  7. 7.
    T. Yamamoto, E. Kubota, A. Taniguchi, S. Dev, K. Tanaka, K. Osakada, M. Sumita, Chem. Mater. 4, 570 (1992)CrossRefGoogle Scholar
  8. 8.
    S. Geetha, K.K.S. Kumar, S. Meenakshi, M.T. Vijayan, D.C. Trivedi, Compos. Sci. Technol. 70, 1017 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Russameeden, J. Pumchusak, J. Met. Mater. Miner. 18, 121 (2008)Google Scholar
  10. 10.
    A.B. Kaiser, Y.W. Park, Synth. Met. pp. 181–184 (2005)Google Scholar
  11. 11.
    K.R. Reddy, B.C. Sin, K.S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Synth. Met. 159, 595 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Hirsch, Nat. Mater. 9, 868 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Yurddaskal, M. Erol, E. Celik, J. Mater. Sci. Mater. Electron. 28, (2017)Google Scholar
  14. 14.
    J.E. An, Y.G. Jeong, Eur. Polym. J. 49, 1322 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Wang, Z.X. Guo, S. Fu, W. Wu, D. Zhu, Prog. Polym. Sci. 29, 1079 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Mohammad, K.I. Winey, M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)CrossRefGoogle Scholar
  17. 17.
    R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36, 638 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Yang, J. Liang, Polym. Int. 60, 738 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Xu, M. Wen, J. Li, S. Guo, M. Wang, Q. Du, J. Shen, Y. Zhang, S. Jiang, Polymer (Guildf). 49, 4861 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Wang, D. Wang, G. Zhu, J. Li, F. Pan, Mater. Lett. 65, 1086 (2011)CrossRefGoogle Scholar
  21. 21.
    B.B. Boonstra, J. Polym. Sci. Part B Polym. Lett. 10, 479 (1972)CrossRefGoogle Scholar
  22. 22.
    W. Zhang, A.A. Dehghani-Sanij, R.S. Blackburn, J. Mater. Sci., pp. 3408–3418 (2007)Google Scholar
  23. 23.
    A.K. Geim, Science (80) 324, 1530 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Xu, J. Loomis, R.D. Bradshaw, B. Panchapakesan, Nanotechnology 23, (2012)CrossRefGoogle Scholar
  25. 25.
    A. Li, C. Zhang, Y.F. Zhang, Polymers (Basel). 9, (2017)CrossRefGoogle Scholar
  26. 26.
    C. Garzón, H. Palza, Compos. Sci. Technol. 99, 117 (2014)CrossRefGoogle Scholar
  27. 27.
    Z. Hu, N. Li, J. Li, C. Zhang, Y. Song, X. Li, G. Wu, F. Xie, Y. Huang, Polymer (Guildf). 71, 8 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59, 41 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Huang, P. Jiang, T. Tanaka, IEEE Electr. Insul. Mag. 27, 8 (2011)CrossRefGoogle Scholar
  30. 30.
    Z. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011)CrossRefGoogle Scholar
  31. 31.
    N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, 1 (2016)CrossRefGoogle Scholar
  32. 32.
    K. Shahil, A. Balandin, ArXiv Prepr. ArXiv1201.0796 1 (2012)Google Scholar
  33. 33.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)CrossRefGoogle Scholar
  34. 34.
    J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon N. Y. 47, 922 (2009)CrossRefGoogle Scholar
  35. 35.
    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)CrossRefGoogle Scholar
  36. 36.
    I.-H. Kim, Y.G. Jeong, J. Polym. Sci. Part B Polym. Phys. 48, 850 (2010)CrossRefGoogle Scholar
  37. 37.
    K.S. Choi, F. Liu, J.S. Choi, T.S. Seo, Langmuir 26, 12902 (2010)CrossRefGoogle Scholar
  38. 38.
    Z. Song, T. Xu, M.L. Gordin, Y.B. Jiang, I.T. Bae, Q. Xiao, H. Zhan, J. Liu, D. Wang, Nano Lett. 12, 2205 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Chen, C. Huang, W. Yu, C. Zhou, Polymer (Guildf). 54, 1603 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, A. Fina, Polymer (Guildf). 102, 292 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Chem. Mater. 08, 45 (2015)Google Scholar
  42. 42.
    J. Aneli, G. Zaikov, O. Mukbaniani, Mol. Cryst. Liq. Cryst. 554, 167 (2012)CrossRefGoogle Scholar
  43. 43.
    P. Verma, P. Saini, V. Choudhary, Mater. Des. 88, 269 (2015)CrossRefGoogle Scholar
  44. 44.
    Y.J. Noh, S.Y. Kim, Polym. Test. 45, 132 (2015)CrossRefGoogle Scholar
  45. 45.
    Y.-H. Zhao, Y.-F. Zhang, Z.-K. Wu, S.-L. Bai, Compos. Part B Eng. 84, 52 (2016)CrossRefGoogle Scholar
  46. 46.
    K.-C. Ke, C. Cheng, L.-J. Lin, S.-Y. Yang, Microsyst. Technol. 24, 3283 (2018)CrossRefGoogle Scholar
  47. 47.
    Z. Fan, C. Zheng, T. Wei, Y. Zhang, G. Luo, Polym. Eng. Sci. 49, 2041 (2009)CrossRefGoogle Scholar
  48. 48.
    Z. Zeng, M. Liu, H. Xu, W. Liu, Y. Liao, H. Jin, L. Zhou, Z. Zhang, Z. Su, Smart Mater. Struct. 25, 065005 (2016)CrossRefGoogle Scholar
  49. 49.
    J.F. Dai, G.J. Wang, L. Ma, C.K. Wu, Rev. Adv. Mater. Sci. 40, 60 (2015)Google Scholar
  50. 50.
    C.-J. Shih, S. Lin, M.S. Strano, D. Blankschtein, J. Am. Chem. Soc. 132, 14638 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringDokuz Eylul UniversityIzmirTurkey
  2. 2.The Graduate School of Natural and Applied SciencesDokuz Eylul UniversityIzmirTurkey
  3. 3.Center for Fabrication and Application of Electronic MaterialsDokuz Eylul UniversityIzmirTurkey

Personalised recommendations