Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18957–18970 | Cite as

Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting

  • Ali M. Huerta-Flores
  • J. M. Mora-Hernández
  • Leticia M. Torres-Martínez
  • Edgar Moctezuma
  • D. Sánchez-Martínez
  • María E. Zarazúa-Morín
  • Björn Wickman
Article

Abstract

Limited visible light absorption, slow charge transference, and high recombination are some of the main problems associated with low efficiency in photocatalytic processes. For these reasons, in the present work, we develope novel zirconate–FeS2 heterostructured photocatalysts with improved visible light harvesting, effective charge separation and high photocatalytic water splitting performance. Herein, alkali and alkaline earth metal zirconates are prepared by a solid state reaction and coupled to FeS2 through a simple wet impregnation method. The incorporation of FeS2 particles induces visible light absorption and electron injection in zirconates, while the appropriate coupling of the semiconductors in the heterostructure allows an enhanced charge separation and suppression of the recombination. The obtained heterostructures exhibit high and stable photocatalytic activity for water splitting under visible light, showing competitive efficiencies among other reported materials. The highest hydrogen evolution rate (4490 µmol g−1 h−1) is shown for BaZrO3–FeS2 and corresponds to more than 20 times the activity of the bare BaZrO3. In summary, this work proposes novel visible light active heterostructures for efficient visible light photocatalytic water splitting.

Notes

Acknowledgements

The authors would like to thank CONACYT (CB-256795-2016, CB-2014-237049, INFRA-2015-252753, PN-2015-01-487, NRF-2016-278729, and PhD Scholarship 386267), SEP (PROFOCIE-2014-19-MSU0011T-1, PRODEP-103.5/15/14156), UANL (PAICYT 2018 IT633-18), FIC-UANL (PAIFIC 2015-5) and the Swedish Research Council Formas. J.M. Mora-Hernandez thanks to Cátedras CONACYT ID7708.

Supplementary material

10854_2018_19_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 KB)

References

  1. 1.
    S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Water splitting: one-dimensional TiO2-nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Li, Y. Chen, W. Li, X. Li, H. Tian, X. Wei, Z. Ren, G. Han, Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 13, 1604115 (2017)CrossRefGoogle Scholar
  4. 4.
    Q. Wang, Y. Shi, Q. Ma, D. Gao, J. Zhong, J. Li, F. Wang, Y. He, R. Wang, A flower-like TiO2 with photocatalytic hydrogen evolution activity modified by Zn(II) porphyrin photocatalysts. J. Mater. Sci. Mater. Electron. 28, 2123–2127 (2016)CrossRefGoogle Scholar
  5. 5.
    H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)CrossRefGoogle Scholar
  7. 7.
    R.A. Rather, S. Singh, B. Pal, A Cu+1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation. J. Catal. 346, 1–9 (2017)CrossRefGoogle Scholar
  8. 8.
    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  9. 9.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain. Energy Rev. 11, 401–425 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy 31, 786–796 (2006)CrossRefGoogle Scholar
  11. 11.
    Y. Inoue, Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009)CrossRefGoogle Scholar
  12. 12.
    T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016)CrossRefGoogle Scholar
  13. 13.
    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, Overall photocatalytic water splitting on Na2ZrxTi6−xO13 (x = 0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts. Int. J. Hydrogen Energy 42, 14547–14559 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Tanigawa, T. Takashima, H. Irie, Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate. J. Mater. Sci. Chem. Eng. 5, 129–141 (2017)Google Scholar
  15. 15.
    A. Alzahrani, D. Barbash, A. Samokhvalov, “One-pot” synthesis and photocatalytic hydrogen generation with nanocrystalline Ag(0)/CaTiO3 and in situ mechanistic studies. J. Phys. Chem. C 120, 19970–19979 (2016)CrossRefGoogle Scholar
  16. 16.
    A.M. Huerta-Flores, J. Chen, L.M. Torres-Martínez, A. Ito, E. Moctezuma, T. Goto, Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution. Fuel 197, 174–185 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Matsuoka, Y. Ide, M. Ogawa, Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Phys. Chem. Chem. Phys. 16, 3520–3522 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Grewe, H. Tüysüz, Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Appl. Mater. Interfaces 7, 23153–23162 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Saito, K. Koga, A. Kudo, amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Dalton Trans. 40, 3909–3913 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Miseki, A. Kudo, Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping. Chem. Sust. Chem. 4, 245–251 (2011)Google Scholar
  21. 21.
    K. Nakagawa, T. Jia, W. Zheng, S.M. Fairclough, M. Katoh, S. Sugiyama, S.C.E. Tsang, Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50, 13702–13705 (2014)CrossRefGoogle Scholar
  22. 22.
    A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting. Fuel 158, 66–71 (2015)CrossRefGoogle Scholar
  23. 23.
    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel 181, 670–679 (2016)CrossRefGoogle Scholar
  24. 24.
    Z. Khan, M. Qureshi, Tantalum doped BaZrO3 for efficient photocatalytic hydrogen generation by water splitting. Catal. Commun. 28, 82–85 (2012)CrossRefGoogle Scholar
  25. 25.
    P. Wu, J. Shi, Z. Zhou, W. Tang, L. Guo, CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 37, 13704–13710 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Tiwari, R.K. Kuraria, S.R. Kuraria, R.K. Tamrakar, Mechanoluminescence, photoluminescence and thermoluminiscence studies of SrZrO3:Ce phosphor. J. Radiat. Res. Appl. Sci. 8, 68–76 (2015)CrossRefGoogle Scholar
  27. 27.
    L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and Green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloy. Compd. 471, 253–258 (2009)CrossRefGoogle Scholar
  28. 28.
    E.C.C. De Souza, R. Muccillo, Properties and applications of perovskite proton conductors. Mater. Res. 13, 385–394 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4, 2917–2940 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Dogan, H. Lin, M. Guilloux-Viry, O. Peña, Focus on properties and applications of perovskites. Adv. Mater. 16, 020301 (2015)Google Scholar
  31. 31.
    G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016)CrossRefGoogle Scholar
  32. 32.
    L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloys Compd. 471, 253–258 (2009)CrossRefGoogle Scholar
  33. 33.
    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J. Photochem. Photobiol. A 356, 166–176 (2018)CrossRefGoogle Scholar
  34. 34.
    L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. (2018).  https://doi.org/10.1007/s10854-018-9096-y CrossRefGoogle Scholar
  35. 35.
    Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau. Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, Proceedings of the 35th Photovoltaics Specialists Conference, Institute of Electrical and Electronics Engineeris (IEEE), 002965–002969 (2010)Google Scholar
  37. 37.
    P. Prabukanthan, R.J. Soukup, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011)Google Scholar
  38. 38.
    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal. J. Mater. Sci. (2018).  https://doi.org/10.1007/s10854-018-9259-x CrossRefGoogle Scholar
  39. 39.
    P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci. 29, 11951–11963 (2018)Google Scholar
  40. 40.
    M. Wang, H. Qin, Y. Fang, J. Liu, L. Meng, FeS2-sensitized ZnO/ZnS nanorod arrays for the photoanodes of quantum-dot-sensitized solar cells. RSC Adv. 5, 105324–105328 (2015)CrossRefGoogle Scholar
  41. 41.
    T.R. Kuo, H.J. Liao, Y.T. Chen, C.Y. Wei, C.C. Chang, Y.C. Chen, Y.H. Chang, J.C. Lin, Y.C. Lee, C.Y. Wen, S.S. Li, K.H. Lin, D.Y. Wang, Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 20, 1640–1647 (2018)CrossRefGoogle Scholar
  42. 42.
    Y. Zhong, J. Liu, Z. Lu, H. Xia, Hierarchical FeS2 nanosheet@Fe2O3 nanosphere heterostructure as promising electrode material for supercapacitors. Mater. Lett. 166, 223–226 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Gong, Q. Liu, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J.Z. Wu, Printable nanocomposite FeS2-PbS nanocrystals/graphene heterojunction photodetectors for broadband photodetection. ACS Appl. Mater. Interfaces 9(33), 27801–27808 (2017)CrossRefGoogle Scholar
  44. 44.
    Q. Tian, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, Synthesis of MoS2/SrZrO3 heterostructures and their photocatalytic H2 evolution under UV irradiation. RSC Adv. 5, 734–739 (2015)CrossRefGoogle Scholar
  45. 45.
    L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron 29(12), 10395–10410 (2018)CrossRefGoogle Scholar
  46. 46.
    J. Meng, X. Fu, K. Du, X. Chen, Q. Lin, X. Wei, J. Li, Z. Zhang, BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 43, 9224–9232 (2018)CrossRefGoogle Scholar
  47. 47.
    G.C. Mather, C. Dussarrat, J. Etourneau, A.R. West, A review of cation-ordered rock salt superstructure oxides. J. Mater. Chem. 10, 2219–2230 (2000)CrossRefGoogle Scholar
  48. 48.
    I. Rodionov, A. ZverevaI, Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ. Chem. Rev. 85, 248–279 (2016)CrossRefGoogle Scholar
  49. 49.
    Q. Wang, J.H. Sohn, S.Y. Park, J.S. Choi, J.Y. Lee, J.S. Chung, Preparation and catalytic activity of K4Zr5O12 for the oxidation of soot from vehicle engine emissions. J. Ind. Eng. Chem. 16, 68–73 (2010)CrossRefGoogle Scholar
  50. 50.
    Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)CrossRefGoogle Scholar
  51. 51.
    T.J. Bastow, P.J. Dirken, M.E. Smith, Factors controlling the 17O NMR chemical shift in ionic mixed metal oxides. J. Phys. Chem. 100, 18539–18545 (1996)CrossRefGoogle Scholar
  52. 52.
    R.I. Eglitis, Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)CrossRefGoogle Scholar
  53. 53.
    P. Stoch, L.J. Szczerba, D. Madej, Z. Pedzich, Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc. 32, 665–670 (2012)CrossRefGoogle Scholar
  54. 54.
    G. Celik, S. Cabuk, First-principles study of electronic structure and optical properties of Sr(Ti,Zr)O3. Cent. Eur. J. Phys. 11, 387–393 (2013)Google Scholar
  55. 55.
    Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye, Y. Bi, Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3, 2720 (2013)CrossRefGoogle Scholar
  56. 56.
    V.M. Longo, L.S. Cavalcante, M.G.S. Costa, M.L. Moreira, A.T. De Figueiredo, J. Andrés, J. Varela, E. Longo, First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor. Chem. Acc. 124, 385–394 (2009)CrossRefGoogle Scholar
  57. 57.
    M. Wiegel, M.H.J. Emond, E.R. Stobbe, G. Blasse, Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 55, 773–778 (1994)CrossRefGoogle Scholar
  58. 58.
    M. Wiegel, M. Hamoumi, G. Blasse, Luminescence and non linear optical properties of perovskite-like niobates and titanates. Mater. Chem. Phys. 36, 289–293 (1994)CrossRefGoogle Scholar
  59. 59.
    B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)CrossRefGoogle Scholar
  60. 60.
    G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D.J. Miller, L.A. Curtiss, X. Ji, K. Amine, Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)CrossRefGoogle Scholar
  61. 61.
    X. Wang, J. Xie, C. Min-Li, Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3, 1235–1242 (2015)CrossRefGoogle Scholar
  62. 62.
    M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res. Lett. 10, 54 (2015)CrossRefGoogle Scholar
  63. 63.
    X. Gao, X. Liu, Z. Zhu, X. Wang, Z. Xie, Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci. Rep. 6, 30543 (2016)CrossRefGoogle Scholar
  64. 64.
    H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan, G. Fang, Low temperature hydrothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. J. Adv. Ceram. 5, 298–307 (2016)CrossRefGoogle Scholar
  65. 65.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ali M. Huerta-Flores
    • 1
    • 2
  • J. M. Mora-Hernández
    • 3
  • Leticia M. Torres-Martínez
    • 1
  • Edgar Moctezuma
    • 2
  • D. Sánchez-Martínez
    • 1
  • María E. Zarazúa-Morín
    • 1
  • Björn Wickman
    • 4
  1. 1.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo León, UANLSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilCONACYT - Universidad Autónoma de Nuevo León, UANLSan Nicolás de los GarzaMexico
  4. 4.Division of Chemical Physics, Department of PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations