Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18828–18839 | Cite as

Effect of ultrasonic vibration on the interfacial IMC three-dimensional morphology and mechanical properties of Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu halogen free solder joints

  • Di Zhao
  • Keke Zhang
  • Jianguo Cui
  • Ning Ma
  • Yibo Pan
  • Chenxiang Yin
Article
  • 60 Downloads

Abstract

Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu halogen free solder joints were fabricated by an ultrasonic vibration (USV)-assisted soldering process. The effects of the USV power on the three-dimensional (3-D) morphology of the intermetallic compounds (IMC) and mechanical properties of the halogen free solder joints were characterized systematically. Results showed that the root-mean-square roughness (Rrms) and the mean spacing of adjacent peaks of the profile (λave) of the interfacial IMC were linearly correlated with shear strength of the halogen free solder joints. It was more comprehensive to adopt the λave and Rrms evaluation parameters to characterize the relationship between the interfacial IMC 3-D morphology and shear strength of the halogen free solder joints. With increasing USV power, the eutectic microstructure of the solder seam was refined, and the proportion of eutectic microstructure in the solder seam and microhardness increased. When the USV power increased to 130 W, the Rrms and average thickness of the interfacial IMC decreased (decreases of 37.6% and 56.4%, respectively) and the corresponding λave and shear strength of the solder joint increased (increases of 68.7% and 45.8%, respectively). With increasing USV power, the fracture mechanism of the halogen free solder joint changed from brittle fracture to the ductile–brittle mixed fracture, and the fracture pathway transferred from the interfacial transition zone consisting of the solder seam and the interfacial IMC layer to the solder seam.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. U1604132, the Plan for Scientific Innovation Talent of Henan Province under Grant No. 154200510022, the National Science and Technology International Cooperation of China under Grant No. 2014DFR50820 and the Collaborative Innovation Center of Non-ferrous Metals, Henan Province, China.

Compliance with ethical standards

Conflict of interest

All of the authors declare that they have no financial and personal relationships with other people or organizations.

References

  1. 1.
    S. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75, 77–95 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Yao, X. Long, L.M. Keer, Appl. Mech. Rev. 69, 1–15 (2017)CrossRefGoogle Scholar
  3. 3.
    K. Zhang, X. Zhang, R. Qiu, H. Shi, Y. Liu, J. Mater. Sci. Mater. Electron. 25, 1681–1686 (2014)CrossRefGoogle Scholar
  4. 4.
    M.H. Shu, B.M. Hsu, M.C. Hu, Microelectron. Reliab. 52, 2690–2700 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Gain, L. Zhang, J. Mater. Sci. Mater. Electron. 27, 11273–11283 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Moore, L. Shi, Mater. Today 17, 163–174 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. Li, Z. Xu, L. Ma, S. Wang, X. Liu, J. Yan, Ultrason. Sonochem. (2018)  https://doi.org/10.1016/j.ultsonch.2018.08.009 CrossRefGoogle Scholar
  8. 8.
    Q. Wang, X. Chen, L. Zhu, J. Yan, Z. Lai, P. Zhao, J. Bao, G. Lv, C. You, X. Zhou, Ultrason. Sonochem. 34, 947–952 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, Y. Xiao, L. Wang, C. Wan, Q. Wang, H. Sheng, M. Li, Ultrason. Sonochem. 45, 86–94 (2018)CrossRefGoogle Scholar
  10. 10.
    B. Wu, X. Leng, Z. Xiu, J. Yan, Ultrason. Sonochem. 44, 280–287 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Xiao, S. Li, Q. Wang, Y. Xiao, Z. Song, Y. Mao, M. Li, Mater. Sci. Eng. A 729, 241–248 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Xiao, Q. Wang, Z. Wang, X. Zeng, M. Li, L. Wang, X. Zhang, X. Zhu, Ultrason. Sonochem. 45, 223–230 (2018)CrossRefGoogle Scholar
  13. 13.
    Z. Xu, Z. Li, J. Li, Z. Ma, J. Yan, Ultrason. Sonochem. 46, 79–88 (2018)CrossRefGoogle Scholar
  14. 14.
    W. Guo, T. Luan, J. He, J. Yan, Mater. Des. 125, 815–821 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Xiao, Y. Zhang, K. Zhao, S. Li, L. Wang, L. Liu, Y. Xiao, Y. Zhang, K. Zhao, S. Li, Ceram. Int. 43, 16–23 (2017)Google Scholar
  16. 16.
    R.K. Chinnam, C. Fauteux, J. Neuenschwander, J. Janczak-Rusch, Acta Mater. 59, 1474–1481 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Ji, Q. Wang, M. Li, J. Electron. Mater. 45, 1–10 (2016)CrossRefGoogle Scholar
  18. 18.
    A.T. Tan, A.W. Tan, F. Yusof, Ultrason. Sonochem. 34, 616–625 (2017)CrossRefGoogle Scholar
  19. 19.
    A.T. Tan, A.W. Tan, F. Yusof, J. Alloys Compd. 705, 188–197 (2017)CrossRefGoogle Scholar
  20. 20.
    D.Q. Yu, L. Wang, J. Alloys Compd. 458, 542–547 (2008)CrossRefGoogle Scholar
  21. 21.
    A.S. Zuruzi, S.K. Lahiri, P. Burman, K.S. Siow, J. Electron. Mater. 30, 997–1000 (2001)CrossRefGoogle Scholar
  22. 22.
    E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, J. Mater. Process. Technol. 123, 133–145 (2002)CrossRefGoogle Scholar
  23. 23.
    A.A. El-Daly, A.M. El-Taher, Mater. Des. 47, 607–614 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Mahmudi, S. Alibabaie, Mater. Sci. Eng., A 559, 421–426 (2013)CrossRefGoogle Scholar
  25. 25.
    Q.K. Zhang, Z.F. Zhang, J. Appl. Phys. 112, 95–105 (2012)Google Scholar
  26. 26.
    P. Liu, P. Yao, J. Liu, J. Alloys Compd. 486, 474–479 (2009)CrossRefGoogle Scholar
  27. 27.
    W. Peng, E. Monlevade, M.E. Marques, Microelectron. Reliab. 47, 2161–2168 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1–60 (2005)CrossRefGoogle Scholar
  29. 29.
    D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, J. Alloys Compd. 389, 153 (2005)CrossRefGoogle Scholar
  30. 30.
    X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, L. Wang, J. Alloys Compd. 492, 433–438 (2010)CrossRefGoogle Scholar
  31. 31.
    P.J. Shang, Z.Q. Liu, X.Y. Pang, D.X. Li, J.K. Shang, Acta Mater. 57, 4697–4706 (2009)CrossRefGoogle Scholar
  32. 32.
    D. Ma, W.D. Wang, S.K. Lahiri, J. Appl. Phys. 91, 3312–3317 (2002)CrossRefGoogle Scholar
  33. 33.
    T. An, F. Qin, Microelectron. Reliab. 54, 932–938 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Di Zhao
    • 1
  • Keke Zhang
    • 1
    • 2
  • Jianguo Cui
    • 1
  • Ning Ma
    • 1
  • Yibo Pan
    • 1
  • Chenxiang Yin
    • 1
  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Henan Province Key Laboratory of Nonferrous Metal Material Science and Processing TechnologyLuoyangPeople’s Republic of China

Personalised recommendations