Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18815–18827 | Cite as

Meta-composites: NiO supported 3D carbon networks structured by 1D building blocks towards tailorable negative permittivity

  • Yunpeng Qu
  • Hanying Wang
  • Guohua Fan
  • Peitao Xie
  • Yao Liu
Article

Abstract

Meta-composites have drawn significant attention due to their preferable applications in electronic devices and promising mass production-scale. Compared with metallic particles as common conductive units in metamaterials or meta-composites fabrication, one-dimensional (1D) carbonaceous building blocks [e.g. multi-walled carbon nanotubes (MWCNTs) or carbon fibers] could provide preferable alternations. In this paper, nickel-modified carbon fibers and MWCNTs were served as 1D building blocks to fabricate meta-composites. Negative permittivity behavior in meta-composites were investigated at radio-frequency region. Herein, two different types of negative permittivity (i.e. dipole-type and plasma-type) were observed and analyzed by Lorentz model and Drude model respectively. Different variation trends of alternative conductivity spectra were followed by Jonscher’s power law or Drude model, indicating conductive mechanism change from hopping conduction to metal-like conduction. Equivalent circuit analysis to impedance response of meta-composites manifested correspondence between inductive characteristic and negative permittivity. This work not only presents novel routes to meta-composites designations by 1D carbon building blocks, but also further clarifies negative permittivity generation mechanism, which will facilitate applications in impedance matching, electromagnetic shielding and multi-layer high-k capacitors etc.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China [Grant Nos. 51771104 and 51402170].

Supplementary material

10854_2018_7_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1746 KB)

References

  1. 1.
    D.R. Smith, J.B. Pendry, M.C. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRefGoogle Scholar
  2. 2.
    W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photonics 1, 224–227 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Sun, R. Fan, X.H. Zhang, Z. Zhang, Z. Shi, P. Xie, Z. Wang, G. Fan, N. Wang, C. Liu, An overview of metamaterials and their achievements in wireless power transfer. J. Mater. Chem. C 6, 4328 (2018)CrossRefGoogle Scholar
  4. 4.
    Z. Shi, J. Wang, F. Mao, C. Yang, C. Zhang, R. Fan, Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers. J. Mater. Chem. A 5, 14575 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)CrossRefGoogle Scholar
  6. 6.
    A. Erentok, R.W. Ziolkowski, Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag. 56, 691–707 (2006)CrossRefGoogle Scholar
  7. 7.
    V.M. Shalaev, T.A. Klar, V.P. Drachev, A.V. Kildishev, Optical negative-index metamaterials: from low to no loss. Nat. Photonics 1, 41–48 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Zubko, J.C. Wojdeł, M. Hadjimichael, S. Fernandez-Pena, A. Sené, I. Luk’yanchuk, J.M. Triscone, J. Íñiguez, Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016)CrossRefGoogle Scholar
  9. 9.
    Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L.T. Zheng, X.H. Zhang, L.W. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Mater. 24, 2349 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Gu, H. Zhang, C. Ma, S. Lyu, F. Yao, C. Liang, X. Yang, J. Guo, Z. Guo, J. Gu, Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J. Phys. Chem. C 121, 13265–13273 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Xie, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, R. Fan, Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Xie, Z. Zhang, K. Liu, L. Qian, F. Dang, Y. Liu, R. Fan, X. Wang, S. Dou, C/SiO2 meta-composite: overcoming the λ/a relationship limitation in metamaterials. Carbon 125, 1–8 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Chen, Metamaterials: constitutive parameters, performance, and chemical methods for realization. J. Mater. Chem. 21, 6452–6463 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, X. Xu, Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region. Carbon 119, 305–313 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Gao, X. Wu, Q. Li, S. Du, F. Huang, L. Liang, H. Zhang, F. Zhuge, H. Cao, Y. Song, Template-free growth of well-ordered silver nano forest/ceramic metamaterial films with tunable optical responses. Adv. Mater. 29, 1605324 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.c. Shi, R.h. Fan, K.l. Yan, K. Sun, M. Zhang, C.g. Wang, X.f. Liu, X.h. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Funct. Mater. 23, 4123–4132 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, J. Zhang, X. Liu, X.L. Wang, S.X. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50–57 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Wu, R. Yin, L. Qian, Z. Zhang, Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater. Des. 117, 18–23 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloys Compd. 725, 1259–1263 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl. Phys. Lett. 111, 112903 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5, 6954 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Wu, R. Yin, Y. Zhang, Z. Wang, P. Xie, L. Qian, Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J. Phys. Chem. C 121, 12037–12045 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Chen, R.H. Fan, M. Gao, S.B. Pan, M.X. Yu, Z.D. Zhang, Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold. J. Magn. Magn. Mater. 381, 105–108 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites. J. Mater. Chem. C 2, 6752–6757 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Shi, S. Chen, K. Sun, X. Wang, R. Fan, X. Wang, Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl. Phys. Lett. 104, 52–3398 (2014)Google Scholar
  27. 27.
    X.a. Wang, Z.c. Shi, M. Chen, R.h. Fan, K.l. Yan, K. Sun, S.b. Pan, M.x. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014)CrossRefGoogle Scholar
  28. 28.
    Q. Hou, K.L. Yan, R.H. Fan, Z.D. Zhang, M. Chen, K. Sun, C.B. Cheng, Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites. RSC Adv. 5, 9472–9475 (2015)CrossRefGoogle Scholar
  29. 29.
    C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)CrossRefGoogle Scholar
  30. 30.
    C.W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37, 1–116 (1993)CrossRefGoogle Scholar
  31. 31.
    X. Kou, X. Yao, J. Qiu, Negative permittivity and negative permeability of multi-walled carbon nanotubes/polypyrrole nanocomposites. Org. Electron. 38, 42–47 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Yao, X. Kou, J. Qiu, M. Moloney, Generation mechanism of negative dielectric properties of metallic oxide crystals/polyaniline composites. J. Phys. Chem. C 120, 4937 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8, 12977–12989 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng, F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency. Mater. Des. 97, 454–458 (2016)CrossRefGoogle Scholar
  35. 35.
    Z. Wang, K. Sun, P. Xie, Y. Liu, R. Fan, Generation mechanism of negative permittivity and Kramers–Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites. J. Phys. 29, 365703 (2017)Google Scholar
  36. 36.
    K. Yan, R. Fan, Z. Shi, M. Chen, L. Qian, Y. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1−xSrxMnO3 at high-frequency. J. Mater. Chem. C 2, 1028–1033 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Gao, Z.C. Shi, R.H. Fan, L. Qian, Z.D. Zhang, J.Y. Guo, High-frequency negative permittivity from Fe/Al2O3 composites with high metal contents. J. Am. Ceram. Soc. 95, 67–70 (2012)CrossRefGoogle Scholar
  38. 38.
    G. Fan, P. Xie, Z. Wang, Y. Qu, Z. Zhang, Y. Liu, R. Fan, Tailorable radio-frequency negative permittivity of titanium nitride sintered with different oxidation pretreatments. Ceram. Int. 43, 16980–16985 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Bi, Y. Gu, Z. Zhang, S. Wang, M. Li, Z. Zhang, Core–shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss. Mater. Des. 89, 933–940 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Wang, Z.C. Shi, F. Mao, S. Chen, X. Wang, Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl. Mater. Interfaces 9, 1793–1800 (2017)CrossRefGoogle Scholar
  41. 41.
    K.L. Yan, R.H. Fan, M. Chen, K. Sun, L.W. Yin, H. Li, S.B. Pan, M.X. Yu, Perovskite (La, Sr)MnO3 with tunable electrical properties by the Sr-doping effect. J. Alloys Compd. 628, 429–432 (2015)CrossRefGoogle Scholar
  42. 42.
    H. Massango, T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Coexistence of gyromagnetic resonance and low frequency plasmonic state in the submicron Ni granular composite materials. J. Appl. Phys. 121, 103902 (2017)CrossRefGoogle Scholar
  43. 43.
    K. Sun, R. Fan, Y. Yin, J. Guo, X.F. Li, Y. Lei, L. An, C. Cheng, Z. Guo, Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J. Phys. Chem. C 121, 7564–7571 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Dressel, G. Gruener, Electrodynamics of solids: optical properties of electrons in matter. Am. J. Phys. 70, 1269–1270 (2002)CrossRefGoogle Scholar
  45. 45.
    C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779–5787 (2017)CrossRefGoogle Scholar
  46. 46.
    T. Tsutaoka, H. Massango, T. Kasagi, S. Yamamoto, K. Hatakeyama, Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl. Phys. Lett. 108, 2075 (2016)CrossRefGoogle Scholar
  47. 47.
    Y. Feng, W. Li, Y. Hou, Y. Yu, W. Cao, T. Zhang, W. Fei, Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3, 1250–1260 (2015)CrossRefGoogle Scholar
  48. 48.
    C. Wu, X. Huang, X. Wu, L. Xie, K. Yang, P. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013)CrossRefGoogle Scholar
  49. 49.
    Z.C. Shi, R.H. Fan, Z.D. Zhang, H.Y. Gong, J. Ouyang, Y.J. Bai, X.H. Zhang, L.W. Yin, Experimental/theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 137401 (2011)Google Scholar
  50. 50.
    Z. Zhang, C. Cheng, X. Han, Percolative cobalt/silicon nitride composites with tunable negative electromagnetic parameters. RSC Adv. 6, 82478 (2016)CrossRefGoogle Scholar
  51. 51.
    Z. Zhang, S. Luo, S. Yu, Z. Guan, R. Sun, C.-P. Wong, Significantly enhanced dielectric and energy storage performance of blend polymer-based composites containing inorganic 3D–network. Mater. Des. 142, 106–113 (2018)CrossRefGoogle Scholar
  52. 52.
    R.C. Dorf, The Electrical Engineering Handbook (Elsevier, Saint Louis, 2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinanChina
  2. 2.School of Electronic Engineering and AutomationGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations